
Prime Computer, Inc.

DOC8691-1LA
Programmer's Guide to
BIND and EPFs
Revision 19.4

Programmer's Guide to
BEND and EPFs

First Edition

by
James Burley, Evelyn Burns,
Jacki Forbes, Sarah Lamb,

Alice Landy

Updated for Rev. 22.0
by

William T. Carbonneau

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1988 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of ^^^
Prime Computer, Inc. DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPHJS, J
PERFORM, Prime INFORMATION, PRIME/SNA, FRIMET.TNK, PRIMENET, PRIMEWAY,
PRIMIX, PRISAM, PST 100, PT25, PT45, PT65, PT200, FW153, PW200, FW250,
RINGNET, SIMPLE, 50 Series, 400, 750, 850, 2250, 2350, 2450, 2550,
2655, 2755, 4050, 4150, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955,
and 995511 are trademarks of Prime Computer, Inc.

PRINTING HISTORY

First Edition (D0C8691-1LA) January 1986 for Revision 19.4
Update 1 (UPD8691-11A) October 1988 for Revision 22.0

CREDITS

Editorial: Thelma Henner
Project Support: Susan Miano
Illustration: Mingling Chang
Document Preparation: Mary Mixon
Production: Judy Gordon

" >

^

i i

HOW TO CRDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list

U n i t e d S t a t e s C u s t o m e r s I n t e r n a t i o n a l

Call Prime Telemarketing,
toll free, at 1-800-343-2533,
Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

Contact your local Prime
subsidiary or distributor.

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts)
1-800-343-2320 (within other states)

1-800-541-8888 (within Alaska)
1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

r
r

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

i n

Contents

A B O U T T E C S B O C K x i

PART I — CREATING AND RUNNING EPFS

1 OVERVIEW OF BIND AND EPFS

P r i m e ' s L i n k e r s a n d L o a d e r s 1 - 1
I _ i n k i n g V e r s u s L o a d i n g 1 - 2
A d d r e s s i n g M o d e s 1 - 2
T h e L O A D] _ i n k i n g L o a d e r 1 - 3
T h e S E G I _ L n k i n g L o a d e r 1 - 3
T h e B I N D L i n k e r 1 - 4

T y p e s o f R u n fi l e s 1 - 6
S t a t i c R u n fi l e s 1 - 6
D y n a m i c R u n fi l e s 1 - 6

T y p e s o f E P F s 1 - 7
The Stages of a Program EPF 1-8
E P F s a n d M e m o r y A l l o c a t i o n 1 - 9
S h a r i n g P r o g r a m E P F s 1 - 1 0
E P F s a n d D B G 1 - 1 0
R e m o t e E P F s 1 - 1 0

2 WORKING WITH BIND

B e f o r e Y o u B e g i n . . . 2 - 2
N a m i n g F i l e s 2 - 2

H o w t o U s e B I N D 2 - 5
I_LnkiJig a Program With One

C o m m a n d 2 - 6
R u n n i n g B I N D I n t e r a c t i v e l y 2 - 7

Basic Subccoranands for I_in__ing
W i t h B I N D 2 - 8

E s s e n t i a l S u b c o m m a n d s 2 - 8
O t h e r U s e f u l S u b c o m m a n d s 2 - 8
A f te r You r EPF I s C rea ted 2 -8
Using the IOAD Subcommand 2-9
Using the LIBRARY Subcommand 2-9
Using the FILE Subcommand 2-12
Using the QUIT Snibcommand 2-13
Using the MAP -UNDEFINED

S u b c o m m a n d 2 - 1 5
Using the HELP Subcommand 2-16

Examples of a Standard I_inking
S e q u e n c e U s i n g B I N D 2 - 1 7

R e t r y i n g a I J n k i n g S e q u e n c e 2 - 1 8
R e l o a d i n g a M o d u l e 2 - 1 9

3 RUNNING EPFS

R u n n i n g Y o u r P r o g r a m 3 - 1
S a m p l e S e s s i o n s 3 - 2

PART II — USING BIND AND EPFS

4 PROGRAMMING WITH EPFS

Overview 4-1
Programming With EPFs Versus

Static-mode Programs 4-2
Guidelines for Programming With

EPFs 4-2
Calling Programs 4-4

What Programs Can EPFs Call? 4-4
What Programs Can CPL Programs

Cal l? 4-5
What Programs Can Static-mode

Programs Call? 4-5
Limitations Involved With

Static-mode Programs 4-5

INVERTING TO EPFS

Why Do I Want to Convert to
EPFs? 5-1

EPFs and PRIMOS 5-2
Suspending EPFs 5-3
EPFs Calling EPFs 5-3
Building EPFs With BIND 5-3
EPFs and the Command Processor

Stack 5-3
Conversion Rules 5-3
What Can't I Convert? 5-4

FTN Programs Using the -PBECB
Option 5-1

Routines With Modifiable Data
in the Program 5-4

Use of CALL EXIT as a Pause
Function 5-5

Programs Sharing Linkage
Segments 5-5

Failure to Declare Memory Used 5-6
Programs That Call R-mode or

S-mode Subroutines 5-7
Requiring Defined Initial

Values for Registers 5-7

" >

^

^

~ >

v i

Programs That Depend on
Automat ic In i t ia l izat ion 5-7

Conversion Procedures 5-8
Rewriting linking Sequences 5-8

:braries and library epfs
What Is a Tlibrary? 6-1
When Is a Library Useful? 6-1
How to Use a Library 6-2
Types of Tlibraries 6-3

Nonshared Tlibraries 6-3
Static Shared Libraries 6-3
Library EPFs 6-4

I_inking a Program to a Library
Routine By Name 6-1

How Dynamic Linking Works 6-1
Library EPFs 6-5

Program-class Libraries 6-5
Process-class Libraries 6-6
Interaction of the Classes of

L ib ra ry 6-6
How to Create Your Own Library

EPFs 6-7
How to Use a Iubrary EPF 6-9

Creating an Entrypoint Search
List File 6-9

Enabling an Entrypoint Search
List File 6-10

Disabling an Entrypoint Search
List File 6-11

Permanently Enabling Your
Entrypoint Search List File 6-11

Use of Private Entrypoint
Search Lists With Phantoms or
Batch Jobs 6-11

Using the DYNT Subcommand of
BIND 6-12

7 TROUBLESHOOTING

P r o b l e m s Yo u M a y R u n I n t o 7 - 1
Running Out of Individual User

R e s o u r c e s 7 - 1
Command Env i ronmen t Dep th 7 -2
Command Environment Breadth 7-2
S e g m e n t s 7 - 2
M i n i - c o m m a n d L e v e l 7 - 3

Running Out of System Resources 7-7
P r o b l e m s W i t h I n - u s e E P F s 7 - 7
P r o b l e m s W i t h B I N D 7 - 8
Problems With Libraries and

S e a r c h R u l e s 7 - 8
U s i n g D B G 7 - 1 0

V l l

PART III — REFERENCE

8 BIND SUBCOMMANDS DICTIONARY

BIND 8-3
Linking Commands 8-1

ALLOCATE 8-1
CHANGE_SYMBOL_NAME 8-4
COMMENT 8-5
OOMMON_WARNING 8-5
COMPRESS 8-5
DYNT 8-6
ENTRYNAME 8-6
FILE 8-7
HELP 8-8
INITIALIZE_DATA 8-8
LIBMODE 8-8
LIBRARY 8-9
LOAD 8-9
MAIN 8-11
MAP 8-11
NO_OOMMON_WARNING 8-15
QUIT 8-15
RELOAD 8-15
RESOLVE_DEFERRED_OOMMON 8-16
SEARCHJRULE VERIFY 8-16
SYMBOL 8-17
VERSION 8-18

Executable Program Files as
Commands 8-18

ITERATION 8-19
NAMBGENPOS 8-19
NO_GENERATION 8-19
NClITERATIQN 8-19
NO_TREEWALK 8-20
NO_WILDCARD 8-20
TREEWALK 8-20
WILDCARD 8-20

9 EPF COMMANDS DICTIONARY

O v e r v i e w 9 - 1
Choosing Which Command to Use 9-2
E P F M i n i - c o m m a n d s 9 - 3
EPF-related PRIMOS Commands 9-1

E X P A N D _ S E A R j C H _ R I J I _ _ S 9 - 5 a
IMT_AI_rZE_OTMMAND_ENV_EONMENT 9-6
L I S T J E P F 9 - 8
] _ I S T J _ I B R A R Y _ E N T R I E S 9 - 1 9
U S T _ I _ E M I T S 9 - 2 1
L I S T _ M I N I _ C 0 4 A N D S 9 - 2 2
L I S T S E A R C H R U L E S 9 - 2 3

V l l l

LIST_SEGMENT 9-25
REMOVE_EPF 9-29
SET_SEARCH_RULES 9-32
;ing the COPY Command

With EPFs 9-36
Using COPY to Replace an

Open EPF File 9-36
REPLACE (.RPn) Files 9-37

10 EPFS CALLING PROGRAMS

Undjerstanding Commands, Command
F u n c t i o n s , a n d P r o g r a m s 1 0 - 2

In terna l PRIMOS Commands 10-2
Internal CPL Command Functions 10-2
E x t e r n a l C o m m a n d s 1 0 - 3
U s e r s ' P r o g r a m s 1 0 - 3

CP$ EPF$RUN, and FRE$RA 10-3
Passing Information to and From

P r o g r a m s 1 0 - 4
C o m m a n d L i n e s 1 0 — 1
S e v e r i t y C o d e s 1 0 - 5
R e t u r n e d T e x t S t r i n g s 1 0 - 7

Understanding Program Invocation 10-7
U s e o f S h a r e d M e m o r y 1 0 - 1 0
Limits on Program Invocation 10-10
T h e C o m m a n d I n t e r f a c e 1 0 - 1 0

U s i n g t h e C P $ S u b r o u t i n e 1 0 - 1 2
Using CP$ to Invoke an

Internal PRIMOS Command 10-12
Using CP$ to Invoke a Command

o r a P r o g r a m 1 0 - 1 3
Using CP$ to Invoke a Function 10-14
C o m m a n d P r e p r o c e s s i n g 1 0 - 1 7
Term ina l I npu t and Ou tpu t 10 -19
E r r o r C o d e s F r o m C P $ 1 0 - 1 9

I f a Program Invokes I tse l f 10-21
S a m p l e P r o g r a m 1 0 - 2 5

APPENDIXES

A B I N D E R R C R M E S S A G E S A - 1

B E P F E R R O R M E S S A G E S B - l

C G L O S S A R Y C - l

I N D E X X - l

r
r

I X

About
This Book

This book is an introduction to BIND and EPFs (Executable Program
Formats). The book is divided into three parts and a set of
appendixes:

Part I: Creating and Running EPFs

• Chapter 1 provides the general background information you need
about BIND and EPFs

• Chapter 2 helps you start to use fundamental commands with BIND
in order to create EPFs.

• Chapter 3 shows you how to run an EPF, using the RESUME command.

Part II: Using BIND and EPFs

• Chapter 4 discusses the programming restrictions and limitations
you must be aware of when you create EPFs.

• Chapter 5 shows you how to convert your static-mode programs
into EPFs.

• Chapter 6 discusses libraries and how to build an EPF library.

• Chapter 7 discusses some problems you may encounter, and ways to
resolve them.

x i

Part III: Reference

• Chapter 8 is a dictionary of BIND subcommands.

• Chapter 9 is a dictionary of EPF-related PRIMOS commands.

• Chapter 10 explains how EPFs call other programs.

• The appendixes list BIND error messages and EPF error messages,
and provide a glossary.

This book assumes that you have some programming background in a
high-level language.

OTHER USEFUL BOOKS

Other useful books for users of BIND and EPFs include the following:

• PRIMOS User's Guide, D004130-5LA, which provides an overview of
programming in a high-level language on a Prime Computer.

• PRIMOS Commands Reference Guide, D0C3108-7LA, which contains
information on format and usage of all PRIMOS user commands.

• The reference guides for the programming languages you use on
your Prime system.

In addition, the following books are valuable if you do systems-level
programming:

• The Advanced Programmer's Guide, Volume 0: Introduction and
Error Codes, D0C10066-3LA

• The Advanced Programmer's Guide, Volume I: BIND and EPFs,
D0C10055-1LA

• The Advanced Programmer's Guide, Volume II: File System,
D0C10056-2LA

• The Advanced Programmer's Guide, Volume III: Command
Environment, D0C10057-1LA

PRIME DOCUMENTATION OONVENTiaNS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase letters.

X l l

Convention

UPPERCASE

lowercase

Abbreviations

Underl ining
i n

examples

Brackets
[]

Braces
{ }

E l l i p s i s

Parentheses
()

r
r

Hyphen

Explanation

In command formats, words
in uppercase letters
indicate the actual names
of commands, statements,
and keywords. They can be
entered in either uppercase
or lowercase letters.

In command formats, words
in lowercase letters indicate
items for which the user must
substitute a suitable value.

If a command or statement
has an abbreviation, it is
indicated by underlining.
In cases where the command
or the directive itself
contains an underscore, the
abbreviation is shown below
the full name, and the name
and abbreviation are placed
within braces.

In examples, user input
is underlined, but system
prompts and output are not.

Brackets enclose a list
of one or more optional
items. Choose none, one,
or two or more items.

Braces enclose a list
of items. Choose only
one item.

An ellipsis indicates that
the preceding item may be
repeated.

In command or statement
formats, parentheses must
be entered exactly
as shown.

Wherever a hyphen appears
as the first letter of an
option, it is a required
part of that option.

Example

COPY

RESUME pathname

OQMOUTFUT

f LISTJSPF
ILE

OK, RESUME MYPRQG
This is the output
Of MY_PROG.CPL
CK,

LD -DETAIL
-SIZE

CLOSE I filename
-ALL

item-1 [... item-n]

DIM array (row,col)

SPOOL -LIST

X l l l

PART I

Creating and Running EPFs

Overview of BIND
and EPFs

This book introduces you to BIND and EPFs. BIND is Prime's utility for
linking V-mode and I-mode programs. The runfiles that BIND creates
from the object files produced by Prime's language translators are
called EPFs (Executable Program Formats).

As you will discover, EPFs and BIND provide a new programming
environment that was not available prior to Rev. 19.4.

Prime has two other utilities, SEG and LOAD, for creating programs from
separate subroutines by linking them. The rest of this chapter
describes the differences among BIND (the newest linker), SEG, and
LOAD. If you are new to Prime systems, you may want to skip this
chapter and go directly to Chapter 2. If you are familiar with SEG or
LOAD, however, you may find this introduction useful.

PRIME'S LINKERS AND LOADERS

After you have written and compiled a program, you are ready to use a
linker to create a runfile — the executable version of your program.
A linker resolves external references as it combines modules of a
program. Thus, using one of the Prime linkers (BIND, SEG, or I£>AD)

1 - 1 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

creates an executable file that consists of linked object files that
contain one or more of the following:

• Subroutines

• User library routines

• System library routines

• Common areas

Linking Versus Loading

SEG and l_OAD build a memory image of a program as they combine its
modules. Therefore, these utilities are known as linking loaders.
BIND, Prime's newest l inking util ity, performs only the linking
function. PRIMDS itself performs the loading function for an EPF when
the runfile is executed.

This difference provides substantial advantages for users of BIND.
However, because the difference occurs inside the system, rather than
being highly visible, BIND in many ways appears to be similar to LOAD
and SEG. (BIND, however, is much simpler to use than SEG.) Because of
this similarity, you may often see BIND called a loader. (Note that
the subcommand for specifying a module as part of the runfile is still
called LOAD in BIND, as it was in LOAD and SEG, even though the BIND
subcommand only links the module, rather than both linking and loading
the module.)

Addressing Modes

Another important distinction among Prime's three linkers concerns the
types of modules they can combine. Prime systems support several
different instruction sets. V mode and I mode are the most powerful,
and differ primarily in performance for certain types of computations.
Prime systems also support R mode, primarily for compatibility with
programs written to run on Prime 100, 200, and 300 systems. Compared
to V mode and I mode, R mode is a very limited instruction set. For
example, R-mode programs can access only 128KB of memory, but V-mode
and I-mode programs can access 32MB or more.

BIND and SEG link only V-mode and I-mode programs. The LOAD utility
links only R-mode programs. Therefore, existing programs linked via
the SEG utility can also be linked via BIND. However, existing
programs linked via the LOAD utility must be converted from R mode to V
mode (or from R mode to I mode) before they can be linked by BIND or
SEG.

F i r s t E d i t i o n 1 - 2

OVERVIEW OF BIND AND EPFS

The LOAD Linking Loader

The first linking loader supplied by Prime was the IjOAD utility. You
use it to link and load R-mode programs (programs that run in 32R mode
or 64R mode). Of the Prime-supplied language translators, only RPG,
FTN, and PMA generate R-mode program modules. IDAD generates a
runfile, called a static-mode runfile, that contains the linked
program. Use the RESUME command to execute a program linked by IOAD.

For debugging an R-mode program, Prime provides the PSD utility (Prime
Symbolic Debugger). This utility allows you to examine and change
memory and set breakpoints at instructions in memory. You cannot use
DBG, Prime's interactive source-level debugger, on R-mode programs.

Because R mode limits program size, speed, ease of debugging, and
functionality, Prime provides methods for converting R-mode programs to
V mode. RPG programs can be converted to VRPG; FIN programs can
either convert to F77 (FORTRAN 77) or use a command line option to
cause FTi<l to generate V-mode program modules; and PMA programs can be
converted to using V mode or I mode by adding certain instructions and
changing some existing instructions and data definitions.

If your program is written in R mode, and you do not intend to convert
it to V mode or I mode, you must continue using the I/3AD utility. See
the SEG and LOAD Reference Guide for information on I£>AD.

The SEG Linking Loader

The second linking loader supplied by Prime was the SEG utility. You
use it to link V-mode and I-mode programs. Except for RPG, all of the
Prime language translators generate V-mode program modules; some of
them also generate I-mode program modules if you specify a command line
option. SEG generates a runfile, called a SEG runfile, that contains
the linked program. To execute a program linked by SEG, use the SEG
command instead of the RESUME command.

SEG can also generate static-mode runfiles like the LOAD linker. This
use, however, is considered an advanced use of SEG and it requires the
use of special SEG commands and a special load sequence. The
advantages of a static-mode runfile over a SEG runfile are that the
former is invoked with the RESUME command and that it normally takes up
less disk space.

For debugging a V-mode or I-mode program, Prime provides EBG, an
interactive source-level debugger with many advanced features. EBG can
operate on SEG runfiles, but not on static-mode runfiles generated by
SEG or LOAD.

If your program is written in V mode or I mode (or in both), you may
continue to use SEG, or you may convert your program to use BIND. If
you choose not to convert it to BIND, you must continue using the SEG
utility. See the SEG and LOAD Reference Guide for information on SEG.

1 - 3 F i r s t E d i t i o n

PROGRAMiyER' S GUIDE TO BIND AND EPFS

The BIND Linker

The latest linker supplied by Prime is the BIND utility. You use it to
link V-mode and I-mode programs. Except for RPG, all of the Prime
language translators generate V-mode program modules; some of them
also generate I-mode program modules if you specify a command line
option. BIND generates a runfile called an EPF (Executable Program
Format) that contains the linked program. To execute a program linked
by BIND, use the RESUME command.

Prime's interactive debugger, EBG, operates on EPFs generated by the
BIND linker.

Compared to SEG, BIND and the EPFs it creates make it easier for you to
build and maintain software. The following is a list of benefits you
gain when using BIND instead of SEG:

• The runfiles are directly RESUMEable.

• The RESUMEable runfiles can be debugged via DBG without having
to be regenerated by using a different load sequence.

• You can use longer subroutine names. BIND limits entrypoint
names to 32 characters, whereas SEG's limit is 8 characters and
lAAD's limit is 6 characters.

• You can create your own libraries of entrypoints.

• PRIMDS takes care of memory allocation at program execution
time. With SEG and 1.0AD, allocation is performed when the
program is linked, thus limiting the placement of the program
for execution.

• EPF runfiles normally use less paging disk space than their SEG
file counterparts, because portions of the EPFs are paged in
directly from their file system partition.

• PRINDS can keep, or suspend, many EPFs in memory at one time for
a user, without causing the EPFs to overwrite each other or
destroy data.

• Program EPFs can be executed as commands or as command
functions.

• Because the actual programming instructions in EPFs must be pure
(that is, the program cannot modify its own instructions),
PRIMOS automatically allows the runfiles to be shared among
users. (Only the pure programming instructions are shared, not
the data that the program uses.) To share programs with SEG
requires that you and your System Administrator coordinate the
use of shared segments. Such sharing is not needed with BIND;
R-mode programs (linked with LOAD) cannot be shared at all.

F i r s t E d i t i o n 1 - 4

OVERVIEW OF BIND AND EPFS

• Because you have better access control over programs in memory,
there is an improvement in security over sharing programs with
SEG.

• It is easy to install a new version of a program even while it
is still being used by other users; in this case, FRIMDS keeps
a copy of the old version.

• All memory used by a program built with BIND is easily released
either automatically by PRIMDS (some time after the program has
terminated) or by the user via a PRINDS command. After a
program built with SEG is run, the memory it used is not
released until the user logs out.

• With BIND, you can write new CPL command functions. These are
EPFs that make use of an extended interface to the command
processor, as described in the Advanced Programmer's Guide,
Volume III; Command Environment.

• BIND keeps useful information in an EPF, such as the version of
BIND used to link the program and the date and time the program
was linked. In addition, BIND allows you to set a version
number for your program and to place some information in a
comment field, both of which are kept in the EPF and displayed
by a PRIfDS command.

• You can obtain a map of a program built with BIND even if you
just tried to run the program and encountered an error. The
command that produces the map does not overwrite information on
the error encountered by your program.

• A program built with BIND can call a new subroutine to execute
PRIMDS commands, such as SPOOL, JOB, and LD.

Note

BIND is not another version of SEG. BIND has fewer commands
than SEG. You can create an EPF with one PRIMDS command line
using BIND; but, SEG does not allow you to do so. Anyone
accustomed to working with SEG will find working with BIND
easy. For example, a program loaded by using SEG's default
options can be linked with BIND by giving almost the same
command sequence that was given to SEG's VLOAD subprocessor.
This process is described more fully in Chapter 2.

Most importantly, SEG creates static runfiles, with all the
limitations that they imply, whereas BIND produces dynamic
runfi les .

1 - 5 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

TYPES OF RUNFILES

Prime's linkers produce three types of runfiles:

• WPD (and sometimes SEG) produce static-mode runfiles.

• SEG produces SEG runfiles, which are also static in nature.

• BIND produces EPFs, which are dynamic in nature.

Static and dynamic runfiles differ in the manner in which they are
placed into memory. These differences are described below.

Static Runfiles

R-mode runfiles, created by LOAD, are static runfiles. They always
execute in segment '4000 of PRIMDS. (The term segment refers to the
way PRIMDS divides virtual memory.)

V-mode and I-mode runfiles created by SEG are also static. They
normally execute in segment '4001 and in higher-numbered segments.

A program built as a static runfile has the following qualities:

• All segment locations used by the program are assigned at load
time by you, by LOAD, or by SEG.

• The program uses the same segment(s) every time it executes.

• The program can be suspended and restarted by PRIMDS, but with
the possibility that intervening static runfiles overwrite and
destroy the data of the suspended program.

• The responsibility for managing memory allocation is left up to
the loader (or to you, if it is shared code).

• The runfile for the program contains a complete image of the
programming instructions (code) and the data that links modules
(linkage).

Dynamic Runfiles

The EPF runfiles that BIND creates are dynamic. A program built as a
dynamic runfile has the following qualities:

• The program can execute in any dynamic segment or segments. The
program does not need to use the same segment each time it is
invoked.

F i r s t E d i t i o n 1 - 6

OVERVIEW OF BIND AND EPFS

• The program is placed by ERIMDS into free (that is, unused)
segments of your address space at runtime. Thus, PRIMDS manages
the allocation of memory for you.

• Because the program can start at any point in memory and occupy
any segments that are free, two or more programs can exist in
memory concurrently. (That is, they can be suspended and
restarted without the possibility of being overwritten, except
by an errant program).

• The EPF runfile for the program contains an image of the
programming instructions (code) and a description of the data
that links modules (linkage) for a given program. IRIMDS uses
this information when executing the EPF. Because PRIMDS knows
where the linkage data is, IRIMDS can adjust the information to
reflect the final placement of the program in memory.

EPFs that are run at different command levels normally do not conflict,
because PRIMDS assigns an EPF only to segments that are not already in
use by a suspended program. (Command levels, explained later in this
chapter, represent a method by which PRIMDS allows you to enter system
commands without resetting your program.)

For a more detailed look at the advantages of dynamic runfiles over
static runfiles, see the Advanced Programmer's Guide, Volume I: BIND
and EPFs.

TYPES OF EPFS

EPFs are of two types:

• Program EPFs

• Library EPFs

A program EPF contains a single main entrypoint and related subroutines
that together constitute a program. A program EPF is invoked
explicitly in one of three ways: by a user's invoking the RESUME
command, by another EPF's calling the first EPF as a subroutine, or by
a user's issuing a command that names a program EPF residing in the UFD
CMDNCO.

A library EPF contains many subroutines, some (or all) of which are
entrypoints to that library EPF. Unlike a program EPF, a library EPF
is not invoked explicitly. Instead, a library EPF is invoked
implicitly by another program when the program references an entrypoint
within the library EPF.

Only program EPFs are discussed in this chapter. For further
information on libraries and on library EPFs, see Chapter 6.

1 - 7 F i r s t E d i t i o n

IROGRAMTER'S GUIDE TO BIND AND EPFS

TOE STAGES OF A PROGRAM EPF

The process by which a program EPF is created can be seen as a series
of distinct stages. The following stages show the sequence involved in
creating and executing an EPF:

Stage I Create and enter your program into the system,
using a text editor such as EMACS or ED. This
text file is your source file. The name of the
souroe file should have the appropriate suffix of
the language in which it is written, such as .F77
for FORTRAN 77, .PL1G for PL1/G, .CBL for CBL,
and so on.

Stage II Compile your source file with a high-level
language compiler or an assembler. For example,
use the F77 compiler for FORTRAN 77, the CBL
compiler for ODBOL 74, and so on. For PMA
modules, use the assembler, PMA. The compiler
produces an object file (also called a binary
file) from your source file. The object file
contains information about your program in a form
that BIND can understand and manipulate. The
name of the object file is given the suffix .BIN
if the source filename has a language suffix.

Stage III Bind your program, using the BIND utility, to
create the runfile. BIND does not actually place
your program in memory at this point. Instead,
BIND creates imaginary memory addresses that are
turned into actual memory addresses by PRIMDS
when you invoke the program. Binding the object
files together generates a self-contained program
EPF with the filename suffix .HJN in your
directory. This is the linking stage.

Stage IV Invoke the EPF by using the RESUME command. At
this point, PRIMDS allocates free space in
virtual memory for your program (based upon
requirements contained in the program EPF file)
and maps the program in the allocated space.
This is the loading stage. PRIMDS then converts
the imaginary addresses in the linkage data
templates into actual addresses. Finally, PRIMDS
begins program execution by calling the program
as if it were a subroutine.

For a more detailed description of how an EPF is linked and executed,
see the Advanced Programmer's Guide, Volume I: BIND and EPFs.

F i r s t E d i t i o n 1 - 8

OVERVIEW OF BIND AND EPFS

EPFS AND MEMPRY ALLOCATION

As mentioned earlier, several EPFs can reside in memory at one time
without overwriting or destroying each other's data. They can also
coexist in memory with a single static-mode program. This capability
allows EPFs to invoke other EPFs, static-mode programs, and PRIMDS
commands as if they were subroutines. It also allows you to suspend
one EPF, invoke another, and then resume execution of the first EPF.
The way FRIM)S handles this situation is shown in Table 1-1.

Table 1-1
How PRIMDS Handles Suspended EPFs

WHEN YOU... PRIPOS WILL...

Enter text using the
editor, ED

Execute ED as an external
static-mode program

Leave ED by using the
BREAK key or typing a
CONTROL-P

Suspend execution of your
program

Type HELP for assistance Execute HELP as a program
EPF without overwriting
previous EPFs or static-mode
programs

Type a ODNTRCL-P again Suspend execution of the
HELP program

Type START Reinvoke and continue
execution of the HELP EPF

Finish using the HELP
command

Return to the PRIMDS command
level for the suspended ED
program

Type START again Reinvoke and continue
execution of the ED pro
gram without overwriting
or destroying data

There is a limit to the number of program EPFs you can have suspended
at a time. This limit is discussed in Chapter 7.

1-9 First Edition

PROGRAMJVER' S GUIDE TO BIND AND EPFS

SHARING PROGRAM EPFS

If two or more users run the same program EPF at the same time, PRIMDS:

• Automatically shares between the users the parts of the program
that don't change

• Protects the shared parts of the program from being changed, by
allowing the users to have only read and execute access

For more information on how PRIMDS takes care of sharing program EPFs,
see the Advanced Programmer's Guide, Volume I: BIND and EPFs.

EPFS AND DBG

EPFs are handled properly by DBG, Prime's Source Level Debugger. If
you are trying to find out why your program failed at execution time,
follow these steps:

1. Compile your program with the -DEBUG option.

2. Link your program, using BIND.

3. Execute your program with the DBG command.

You can also execute the runfile thus created via the RESUME command.
You do not need to use different BIND sequences to generate one runfile
that can be invoked with EBG and one that can be invoked with RESUME.
However, programs compiled with the -DEBUG option take up more disk
space (due to the additional information supplied to DBG) and do not
take advantage of any optimizations the compiler may perform.
Therefore, you should eventually recompile the program without the
-DEBUG option and relink it.

For more information, see the Source Level Debugger User's Guide.

REMOTE EPFS

If you invoke an EPF that resides on a remote system, it works almost
exactly as if it were on the local system, with three differences:

• The EPF is not shared with other users on your system.

• The entire program is paged on the local system.

• The procedure code is not protected against writing by the user.

If the remote system shuts down after the program starts running, the
program continues running without interruption.

F i r s t E d i t i o n 1 - 1 0

Working With BIND

This chapter shows you how to use BIND to create an Executable Program
Format (EPF). (Chapter 3 shows you how to use the RESUME command to
execute EPFs.) For most of your linking needs, the basic subcommands
given in this chapter are sufficient. These subcommands are:

S u b c o m m a n d U s e

LOAD Links one or more program modules.

LIBRARY Links one or more libraries.

F ILE S to res t he fin i shed runfi le on d i sk .

QUIT Ends the BIND session without storing results.

M A P C h e c k s f o r u n r e s o l v e d r e f e r e n c e s .

HELP Displays information on BIND subcommands.

RELOAD Relinks an object file into an existing EPF.

See Chapter 8 of this book for other BIND subcommands used for more
specialized linking.

2-1 First Edition

IROGRAMPER' S GUIDE TO BIND AND EPFS

BEFORE YOU BEGIN...

Before you can use BIND, you must first compile your source program.
This compilation process creates an object file (also called a binary
file), which is the type of file you need as input to BIND.

Naming Files

Prime's convention for naming files allcws you to readily identify file
types and the relation of files to each other. A file named according
to this convention has a two-part filename made up of a basename and a
suffix. The suffix, which identifies the file's type, is separated
from the basename by a period (.). For example, the filename
CIRCLE.F77 has CIRCLE as its basename and F77 as its suffix.

The suffixes and the types of files that they identify are:

F i l e T y p e S u f fi x

Source file The name of the compiler for the source
file's language (examples: CBL, F77,
PL1G, VRPG)

Objec t fi le BIN (c reated by a compi le r o r the
assembler)

Dynamic runfile RUN (an EPF created by BIND)

SEG runfile SEG (created by SEG)

Static-mode runfile SAVE (created by LOAD or SEG)

You should follow this convention when you name your source files.
Doing so makes your work easier because you can quickly tell in what
language a source file is written. Proper suffixes also allow Prime's
compilers to generate the .BIN suffix when they create your object
files. This, in turn, allows BIND to operate most efficiently. For
example, if you name a file TEST.F77 and then compile it, the F77
compiler automatically names the object file TEST.BIN. If you then use
BIND to link TEST.BIN, BIND names the resulting runfile TEST.FUN.

Note

PRIMDS requires the .FUN suffix in order to to recognize and
correctly handle an EPF. Therefore, BIND always adds the .FUN
suffix to whatever default name it creates or to whatever name
you choose for your runfile. If you later change the name of
your runfile, make sure that you retain the .FUN suffix.

F i r s t E d i t i o n 2 - 2

WORKING WITH BIND

The following examples show the use of compiler-name suffixes
of Prime's high-level languages:

f o r a l l

Source filename

MYPROG.CC
TEST.CBL
CIRCLE.FTN
LIFE.F77
GAMES.PASCAL
TARGET.PL1
SAMPLE.VRPG

Compiler

CC
CBL
FTN
F77
PASCAL
PL1
VRPG

Object filename

MYPROG.BIN
TEST. BIN
CIRCLE.BIN
LIFE.BIN
GAMES.BIN
TARGET.BIN
SAMPLE.BIN

Filenames Without Suffixes: If your file does not have a compiler-name
suffix, and you do not specify a particular name for your object file
(via the -BINARY option), the compiler names your object file ty adding
the prefix B_ to the filename. For example, if you compile the file
TEST, the compiler chooses a default filename of B_TEST for the object
file. CC, CBL, FTN, F77, Pascal, PL/I and VRPG all use this naming
convention. If you already have files named B_j?rogram, you may want to
change their names to program.BIN.

Name Recognition: Both BIND and the compilers listed in this chapter
recognize and search for appropriate suffixes. Recognizing appropriate
suffixes is important for two reasons. First, it means that you do not
have to type the suffix when invoking BIND. If you ask BIND to link
the file TEST, BIND looks for a file named TEST.BIN (and then for a
file named TEST.RUN) before it looks for plain TEST. The second reason
is that BIND does not recognize prefixes, but instead considers them to
be part of the base name of the file. If you have a file named B_TEST,
you must specify its full name to BIND.

Table 2-1 shows how to create, link, and run a program whose object
file uses the .BIN suffix. Table 2-2 shows how to link and run a
program whose object file uses the B_ prefix.

r
r

2-3 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

Table 2-1
Creating and Running a Program With Suf fixed Filenames

Step Command

Create a
program

ED or EMACS

Compile the Compiler-name
p r o g r a m b a s e n a m e

Bind the
program

Run the
program

BIND

RESUME basename

Act ion

Give the program the filename
basename.compiler-name.
(Doing so indicates that the
file contains a program of a
specific language type.)

(You do not need to specify
the suffix.) This command
generates an object module
with the name basename.BIN.

The BIND command assumes the
presence of the .BIN suffix,
and creates a runfile with
the name basename.RUN.

The RESUME command recognizes
that the runfile is an EPF
when it sees that it has the
suffix .RUN.

First Edition, Update 1 2-4

WORKING WITH BIND

Table 2-2
Linking and Running a Program Without Suffixed Filenames

Step Command Action

Create a ED or EMACS Give your program the name
program filename (without a suffix).

Compile the Compiler-name This command generates an
program filename object module with the name

B_filename.

Bind the BIND Tell BIND to link B_filename.
program Do not let BIND choose a

default name for the runfile;
specify a runfile name that
does not have the B_ prefix.
(As explained later in this
chapter, you can give the
runfile any name you choose;
BIND still adds the .FUN
su ffix .)

Run the RESUME filename PRIMDS recognizes the runfile
program as an EPF when it sees the

.FUN suffix.

FEW TO USE BIND

After you have successfully compiled your program, you are ready to
create a runfile — the executable version of your program — using
BIND. There are two ways of using BIND:

• Directly, from the PRIMDS command line. (This is the command
form.)

• Interactively, by issuing BIND subcommands. (This is the
subsystem form.)

To use BIND properly, you should have at least the following access
rights to your current directory: Add, Delete, List, Read, Use, and

2-5 First Edition

PROGRAMJyER' S GUIDE TO BIND AND EPFS

Write. For example, if you use BIND in a directory in which you have
only LUR rights, you receive the following message:

OK, BIND
[BIND rev 19.4]
Insufficient access rights. T$0000 (TEMPF$)
OK,

Linking a Program With One Command

To invoke BIND from PRIMDS to link your program in one step, type the
command:

BIND [EPF-filename] options

Invoking BIND in this way allows you to create your runfile with one
PRIMDS command line. EPF-filename is the name of the EPF that you want
BIND to create. BIND saves your runfile in your directory under the
name EPF-filename.FUN. If you do not specify EPF-filename, BIND
creates a filename by adding the suffix .FUN to the name of the first
object file that you link, and saves the runfile in your directory.

The options that you give on the BIND command line correspond to
internal BIND subcommands that are explained in the following sections.
However, when used as command line options, the subcommands are
prefixed with hyphens. Thus, LOAD becomes -DDAD, LIBRARY becomes
-LIBRARY, and so on.

A sample BIND session using one PRIMDS command line looks like this:

OK, BIND MYPROG -LOAD ADD SUB -LIBRARY
[BIND rev 19.4]
BIND COMPLETE
OK,

In this example, BIND saves your runfile with the name MYPROG.FUN. The
runfile contains the linked object files ADD.BIN and SUB.BIN, plus
system library subroutines.

F i r s t E d i t i o n 2 - 6

WORKING WITH BIND

Running BIND Interactively

To invoke BIND interactively, type the command:

BIND [EPF-filename]

BIND then displays a colon (:) prompt. You respond to this prompt by
issuing BIND subcommands. Each time you press the carriage return, you
see this prompt. When you leave BIND, your system prompt appears on
the screen.

A sample interactive BIND session using the same program as that used
in the single-step example looks like this:

OK, BIND MYPROG
[BIND rev 19.4]

LOAD ADD
LOAD SUB
LIBRARY

BIND COMPLETE
: FILE
OK,

BIND saves the runfile in your directory as MYPROG.FUN.

If you do not specify an EPF-filename when you use BIND interactively,
BIND takes the name of the first object file that you link and adds the
suffix .FUN. For example:

OK, BIND
[BIND rev 19.4]
: LOAD ADD
: LOAD SUB
: LIBRARY
BIND COMPLETE
: FILE
OK,

The runfile in your directory is given the name ADD.FUN.

2 - 7 F i r s t E d i t i o n

PROGRAMMER' S GUIDE TO BIND AND EPFS

BASIC SUBCOMMANDS FOR LINKING WITH BIND

Essential Subcommands

You can link most of your programs with the subcommands LOAD, LIBRARY,
and FILE. If you are using BIND interactively, after you receive the
colon (:) prompt, enter the subcommands in the following sequence:

1. Use the LOAD subcommand to link your program, starting with the
main procedure and followed by subprograms in any order.

2. Use the LIBRARY subcommand to link the libraries you need.
(See Table 2-3.)

3. Use the FILE subcommand to save the EPF runfile and return to
PRIMDS.

Other Useful Subcommands

At times, you may want to use the following subcommands. You may use
them at any time during the linking sequence.

• Use the QUIT subcommand to return to PRIMDS command level
without saving the current EPF. (This subcommand aborts the
BIND session.)

• Use the MAP -UNDEFINED subcommand to identify unresolved
references (subroutines that are called but that you have not
yet linked) if you do not receive a BIND COMPLETE message at
your terminal when you expected it.

• Use the HELP subcommand to get online help on the subcommands if
you run into trouble while using BIND.

If you are using BIND on the command line, each of the above
subcommands must be preceded by a hyphen (-).

After Your EPF Is Created

It sometimes happens that, when you have created and run your EPF, you
find problems in one or more modules. In these cases, BIND allows you
to use a quick linking sequence, using the LOAD and RELOAD subcommands,
to link a corrected version of one or more modules into the existing
EPF. The procedure for doing this is shown at the end of this chapter.

F i r s t E d i t i o n 2 - 8

WORKING WITH BIND

Using the LOAD Subcommand

The LOAD subcommand links object files into the EPF. It has the
following format:

LOAD pathname-1 [pathname-2 pathname-3...]

This subcommand links the files specified by pathname to the current
EPF. If you have not yet named the EPF by specifying its name on the
BIND command line, BIND uses the name you give in the first pathname.
Each pathname is the name of an object file (binary file). When two or
more subroutines are present in an object file, the subroutines are
linked in the order in which they appear in the object file.

Examples:

L O A D H O M E / * L i n k s o b j e c t fi l e
with the name HOME.BIN,
The runfile in your
directory is HOME.FUN.

LOAD HOME ADD SUB /* Links object files
HOME.BIN, ADD.BIN,
and SUB.BIN. The
runfile in your
directory is called
HOME. FUN.

Using the LIBRARY Subcommand

The LIBRARY subcommand links system libraries into the EPF. It has the
following format:

LIBRARY [library-name-1 library-name-2 library-name-3...]

This subcommand links application libraries, language libraries, and
other system libraries. The subcommand format is the same as that of
the I/DAD subcommand. The only difference is that all libraries (except
those with pathnames) are obtained from a directory called LIB, in
which all of Prime's standard system libraries are kept. If you are
linking a library supplied by you or by someone else, the LIBRARY
subcommand looks for the file in the location you specify in the
pathname.

During each BIND session to link a program, you must issue the LIBRARY
subcommand with no pathname specified, in order to link the system
library. This procedure links the PFTNLB.BIN library in the LIB UFD.

2 - 9 F i r s t E d i t i o n

PROGRAMMER' S GUIDE TO BIND AND EPFS

Typically, it is the last command you use to link a module (via LOAD or
LIBRARY) during a BIND session.

Examples:

LIBRARY TEST>MYLIB /* Gets the file MYLIB.BIN from
the TEST UFD.

LIBRARY VFORMS /* Gets the library VPORMS.BIN
from the LIB UFD.

LIBRARY /* Gets the file PFTNLB.BIN from
the LIB UFD.

You must link the libraries in the following specific order:

1. The libraries supplied by you.

2. The libraries that are specific to each language.

3. The application libraries.

4. The system libraries.

User-supplied Libraries: These are libraries supplied by you, the
user, in a file that you specify in the pathname when you use the
LIBRARY subcommand. They are not usually kept in the directory LIB.
(You may also link these libraries with the LOAD subcommand.)

Language-specific Libraries: All Prime languages, except for FORTRAN
and PMA, require that a specific language library be linked. See Table
2-3 for the library you need to use for each language. You may link
more than one language library if your program is made up of
subroutines written in more than one language.

Examples:

: LIBRARY PASLIB /* Links the PASCAL language library

: LIBRARY CBLLIB /* Links the CBL language library

First Edition 2-10

WORKING WITH BIND

Table 2-3
Language Libraries

Language L ib ra ry

C QJLIB

CBL(COBOL 74) CBLLIB

F77
FTN

Pascal PASLIB

PL1G PL1GLB

PMA

VRPG VRPGLB

Application Libraries: If you are using subroutines from Prime's
applications library or are sorting and merging subroutines from one of
the sort libraries, you must use the LIBRARY subcommand followed by
VAPFLB or VSRTLI to link these special libraries. If your CBL program
uses MIEftSFLUS files, you must link the VKDALB library with the LIBRARY
subcommand. You may link as many application libraries as your program
uses.

Examples:

LIBRARY VAPPLB

LIBRARY VSRTLI

/* Links the applications library

/* Links one of the sort libraries

Standard System Library: All programs require the standard system
library. Use the LIBRARY subcommand with no arguments, in order to
link the standard system library.

Example:

LIBRARY /* Links the standard system library

After the standard system library has been linked, BIND COMILETE
appears on your terminal. If you do not receive this message, use the
MAP -UNDEFINED subcommand to identify unresolved references.

2-11 First Edition

PROGRAMMER'S GUIDE TO BIND AND EPFS

Using the FILE Subcommand

After you receive the message BIND COMPLETE at your terminal, use the
FILE subcommand. It has the following format:

FILE [EPF-filename]

After you issue this subcommand, BIND:

1. Performs some final processing of the EPF.

2. Files the EPF in your directory with a .FUN suffix. If you
specified a name for the EPF, it is written in your directory
under the name EPF-filename.FUN.

3. Returns control to PRIMDS.

Example:

OK, BIND
[BIND rev 19.4]
: LOAD SHORTY
: LIBRARY
BIND COMPLETE
: FILE TEST
OK,

BIND files the runfile in your directory under the EPF-filename of
TEST.FUN. If you already have an EPF with the same name, BIND usually
overwrites the existing EPF. However, if other users are already using
the existing EPF or if you suspended the existing EPF while running it
and did not release it, BIND does not overwrite the existing EPF.
Instead, BIND changes the suffix of the name of the existing EPF from
.FUN to .RPn, where n is a digit (0 through 9). Then, BIND writes out
your EPF with the suffix .FUN. That way, users already using the
existing version of your EPF are not affected by the installation of
the new version.

For example, if the SHORTY program, linked in the previous example, is
in use when you attempt to generate a new version of it, BIND changes
the name of the old version from SHORTY.FUN to SHORTY.RPO before
creating the new version (SHORTY. FUN).

F i r s t E d i t i o n 2 - 1 2

WORKING WITH BIND

In this case, the BIND session looks like this:

OK, BIND
[BIND rev 19.4]
: LOAD SHORTY
: LIBRARY
BIND COMPLETE
: FILE
The file is in use. The old file is now called SHORTY.RPO.
OK,

Note

A filename specified by the FILE subcommand overrides any
filename specified on the BIND command line.

Default FILE: If you are using the single-step BIND invocation from
the PRIMDS command line, you do not have to specify the -FILE option.
In command form, BIND assumes you wish to FILE the EPF as the last
step, unless you specify the -QUIT option.

For example:

OK, BIND -LOAD HOME ADD SUB -LIBRARY
[BIND rev 19.4]
BIND COMPLETE
OK,

In this example, BIND automatically appends a -FILE option and saves
the runfile in your directory under the EPF-filename HOME.FUN.

Therefore, if you are using the command form of BIND and you do not
want the EPF to be created, you must use the -QUIT option to end the
command line, as shown in the next section.

Using the QUIT Subcommand

If you want to leave BIND without completing the link process or if you
do not want an EPF to be made while using the single-step command line
linking, use the QUIT subcommand:

QUIT

The QUIT subcommand ends a BIND session without saving the current EPF.
BIND asks you to verify that you have not filed the EPF before

2 - 1 3 F i r s t E d i t i o n

PROGRAMMER1 S GUIDE TO BIND AND EPFS

returning to PRIMDS. If you already have an EPF with the same name as
the one you are building during the current session, using the QUIT
subcommand to abort the BIND session does not overwrite the existing
r u n fi l e .

The following example illustrates the QUIT subcommand during an
interactive session:

OK, BIND
[BIND rev 19.4]
: LOAD PAY
: LIBRARY
BIND COMPLETE
: QUIT
EPF not filed, ok to quit? ('Yes','Y','No', 'N'): YES
OK,

In this example, if an EPF named PAY.FUN already exists, it is not
overwritten, because the runfile was not filed. If you answer NO to
the verification query, you remain in BIND and the colon prompt is
displayed again.

Using QUIT as a command line option is shown in the following example,
which uses the same PAY.BIN file:

OK, BIND -LOAD PAY -LIBRARY -QUIT
[BIND rev 19.4]
BIND COMPLETE
OK,

The result of this example is the same as the previous one.

Note

Users familiar with SEG should note the difference between the
QUIT subcommands of BIND and SEG. The QUIT subcommand of SEG
writes out the SEG runfile (overwriting an existing runfile in
the process) before returning to PRIMDS. In BIND, the QUIT
subcommand does not write out the EPF runfile before returning
to PRIMDS. Whereas SEG overwrites an existing SEG runfile as
soon as you begin loading modules into it, BIND does not
overwrite an existing EPF runfile until you issue the FILE
subcommand.

F i r s t E d i t i o n 2 - 1 4

WORKING WITH BIND

Using the MAP -UNDEFINED Subcommand

If you did not receive the message BIND COMPLETE at the end of your
BIND session, you can use the MAP -UNDEFINED subcommand to find out
whether you have any unresolved subroutine references. To do this,
issue the subcommand:

MAP -UNDEFINED

For example:

OK, BIND
[BIND rev 19.4]

LOAD WHO
LIBRARY
MAP -UNDEFINED

Map of WHO

UNDEFINED SYMBOLS:
X I T - 0 0 0 2 / 0 0 0 0 2 0

: QUIT
EPF not filed, ok to quit? ('Yes','Y','No', 'N') : YES
OK,

Here, the user realizes that a reference to a subroutine named XIT in
the program WHO should have been a reference to EXIT instead. The user
issues the QUIT subcommand. In such a situation, you would normally
edit your program, correct the misspelling, and recompile your program
before attempting to link it again.

Other possible causes of unresolved references are that you did not
link one of the subroutines your program uses or that you did not link
one of the libraries your program uses.

2 - 1 5 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

Table 2-4 lists some examples of unresolved references and what you can
do about them.

Table 2-4
Unresolved References

P r o b l e m S o l u t i o n

Miss ing rout ines that
should have been linked.

Return to the point in the BIND
session where the missing routines
should have been l inked; l ink
them; then proceed through the
BIND sess ion again unt i l the
message BIND COMPLETE appears.

Misspelling of a refer
ence in the source code.

Correct the error in the souroe
code; recompile and relink the
program.

Program error caused
an identifier to be mis
interpreted or not gen
erated by the compiler.

Correct the error in your program;
recompile and relink the program.

Later in this chapter, there is a section that explains what
happens during an ordinary program linking sequence. There you can
find examples illustrating what to do if you do not receive a BIND
COMPLETE message.

Using the HELP Subcommand

If you run into trouble during your BIND
subcommand in response to the colon
subcommand has the following format:

session, use the HELP
(:) prompt. The HELP

HELP subcommand-name
-LIST

First Edition 2-16

WORKING WITH BIND

The HELP subcommand displays some brief information on the syntax and
semantics of a specific subcommand if you type HELP followed by the
subcommand name. Type HELP -LIST for a list of all BIND subcommands.

For example:

: HELP FILE
FILE [<epfname>]

will exit to PRIMDS after filing the EPF.
If <epfname> is specified, the EPF will be named <epfname>.FUN

EXAMPLES OF A STANDARD LINKING SEQUENCE USING BIND

The following example shews a standard linking sequence using BIND. In
response to the colon (:) prompt, you link a CBL program.

OK, BIND
[BIND rev 19.4]
: LOAD SAM_- jE3 / * L i nk p rog ram fi r s t
: LIBRARY CBLLIB /* L ink the language-specific

l i b ra ry
: L I B R A R Y / * L i n k t h e s t a n d a r d l i b r a r i e s
BIND COMPLETE /* No more unresolved references
: F I L E / * S a v e t h e E P F a n d r e t u r n t o
O K , / * P R I M D S

You can accomplish this same sequence in a single step by giving the
required subcommands in the ERIMDS command line that invokes BIND.
When you use this method, you must precede each BIND subcommand with a
hyphen (-).

OK, BIND -LOAD SAMPLE3 -LIBRARY CBLLIB -LIBRARY
[BIND rev 19.4]
BIND COMPLETE
OK,

2 - 1 7 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

RETRYING A LINKING SEQUENCE

Suppose that, during your binding session with a Pascal program,
you forget to link the standard system library. When you do not
receive a BIND GOMILETE message, you check for the missing
reference and relink from the point at which the omission occurred.
Your binding sequence looks like this:

OK, BIND
[BIND rev 19.4]

LOAD PASS
LOAD VAL
LIBRARY PASLIB
LIBRARY PL1GLB
MAP -UNDEFINED

Map of PASS

/ *
/ *
/ *
/ *
/ *

Link the main program.
Link the called program.
Link the Pascal library.
Link the PL1G library.
Use the MAP command to
find unresolved references,

UNDEFINED SYMBOLS:
P$ASBC -0002/000072
P$ENTP -0002/000070

: LIBRARY
BIND COMPLETE
: FILE
OK,

/* Link the missing standard
system libraries.

/* File the EPF and return
to PRIMDS level.

In the following F77 program, there is an error in the spelling of
a reference in the souroe code, and the error does not show up
during the compilation process. However, you do not receive a BIND
COMPLETE message when you try to create an EPF. The MAP -UNDEFINED
subcommand indicates that there is an undefined symbol named XIT.
You use the QUIT subcommand to leave BIND (without saving the EPF);
correct the error in the source code; recompile the program; and
relink it, using BIND.

OK, BIND
[BIND rev 19.4]

LOAD HOME
LIBRARY
MAP -UNDEFINED

Map of HOME

/* Link main program.
/* Link the libraries.
/* Use the Map command to

help locate the error.

UNDEFINED SYMBOLS:
XIT -0002/000030

: QUIT

EPF not filed, ok to quit?
OK,

/* Use the QUIT command
to leave BIND.

'YesVYVNo*, 'N') : YES

First Edition 2-18

WORKING WITH BIND

After you correct the error in your
linking sequence looks like this:

program, your compiling and

OK, F77 HOME
[F77 Rev. 19.4]
0000 ERRORS [<.MAIN.> F77-REV 19.4]

/* Recompile your program,

OK, BIND
[BIND rev 19.4]
: LOAD HOME
: LIBRARY
BIND COMPLETE
: FILE
OK,

/ *
/ *
/ *
/ *
/ *

Link the main program.
Link the libraries.
Successful link!
File the EPF and
Return to PRIMDS.

RELOADING A MODULE

Suppose you have created an EPF named BIG_PROGRAM, which contains
six program modules. Suppose also that when you run this program
you discover an error in one of the modules, MDDULE__5. You correct
the error and recompile MDDULE_5. You now want to rebind the
program and re-run it to see that it is now working correctly.

To do this most quickly, you first link the existing EPF, then
relink your new version of MDDULE__5. The BIND sequence looks like
t h i s :

OK, BIND
[BIND rev 19.4]
: LOAD BIG__ROGRAM.FUN
: RELOAD MDDULE_5
BIND CDMULETE
: FILE
OK,

If you do not get the BIND COMPLETE message after relinking your
module, you should reissue the LIBRARY commands that you used in
your original BIND sequence. This situation would happen if you
added new library calls when you rewrote the module.

For more details on the RELOAD command, see Chapter 8.

2-19 First Edition

Running EPFs

This chapter describes how to run an EPF (Executable Program Format) by
using the FRIMDS level RESUME command. For more language-specific
information, see the appropriate language reference guide.

FUNNING YOUR PROGRAM

Once you have compiled and created an EPF, you are ready to run your
program, using the RESUME command. The RESUME command has the
following format:

RESUME pathname [program-arguments]

program-arguments are arguments that are passed to the program.
For example, suppose you have used BIND to create a runfile with the
name MYPROG.FUN. To execute MYPROG, use the PRIMDS level command:

RESUME MYPROG

PRIMDS automatically looks in your directory for a file called
MYPROG.FUN. If it finds such a file, FRIMDS begins executing it as an

3 - 1 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

EPF runfile. If it does not find MYPROG.FUN, PRIMDS then searches for
the following files, in order, and executes the first that it finds.

1. MYIROG.SAVE (static-mode runfile generated by LOAD or SEG)

2. MYPROG.CPL (CPL program)

3. MYPROG (static-mode runfile generated by LOAD or SEG)

If FRIMDS finds none of these files, it displays the message:

Not found. MYPROG (std$cp)
ER!

For more information on running programs see the Prime User's Guide.

SAMPLE SESSIONS

The following sample session uses an F77 program called POWERS to show
you how to create and execute an EPF. The program displays a table of
numbers, one through five, and calculates the square, cube, and fourth
power for each number. First, you compile the program:

OK, F77 POWERS
[F77 Rev. 19.4]
0000 ERRORS [<.MAIN.> F77-REV 19.4]
OK,

Then, using BIND from the command line, you create an EPF:

OK, BIND -LOAD POWERS -LIBRARY
[BIND rev 19.4]
BIND COMPLETE
OK,

F i r s t E d i t i o n 3 - 2

FUNNING EPFS

You now have in your directory a file with the filename POWERS.FUN.
This is what happens when you execute your program:

OK, RESUME POWERS

NUMBER

1
2
3
4
5

SQUARE

1
4
9

16
25

CUBE

1
8

27
64

125

FOURTH

1
16
81

256
625

OK,

In this next session, you have a OOBCL 74 program that adds and
subtracts from an initial value. Once again, the first thing you must
do is to compile the program:

OK, CBL VALUES

[CBL rev 19.4]
OK,

After you compile your program successfully, you invoke BIND to create
an EPF:

OK, BIND
[BIND rev 19.4]

LOAD VALUES
LIBRARY CBLLIB
LIBRARY

BIND COMPLETE
: FILE
OK,

3-3 First Edition

PROGRAMMER'S GUIDE TO BIND AND EPFS

In your directory there is a runfile called VALUES.FUN. To begin
execution of the EPF, type:

OK, RESUME VALUES

THIS IS A IROGRAM TO ADD AND SUBTRACT FROM AN INITIAL TOTAL

WHAT IS INITIAL VALUE OF TOTAL?
** NOTE FORMAT MUST NOT USE DECIMAL POINT.
** EX: TO REGISTER $45.25, ENTER 4525.

3695
ENTER AMOUNT, FRECEDED BY : A FOR ADDITION

S FOR SUBTRACTION
Q FOR QUIT

S2645
BALANCE SO FAR: 10.50
ENTER CODE AND AMOUNT (Q TO QUIT).
__
BALANCE IS:

10.50
OK,

F i r s t E d i t i o n 3 - 4

PART II

Using BIND and EPFs

Programming
With EPFs

OVERVIEW

In the first three chapters of this book you learned about EPFs and the
fundamentals of using BIND and RESUME to create and execute them. This
section of the book is about programming with BIND and EPFs and is
divided into the following chapters:

• Chapter 4 describes the limitations and restrictions necessary
when you program with EPFs.

• Chapter 5 describes what happens when you convert an existing
static-mode program to an EPF.

• Chapter 6 describes libraries and how to create EPF libraries.

• Chapter 7 describes what to do if you run into problems when you
use EPFs.

This chapter describes the programming environment necessary for
building EPFs. The following topics are covered:

• Programming with EPFs versus static-mode programs

• Guidelines for programming with EPFs

• Calling other programs

4 - 1 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

Note

This chapter describes only program EPFs. For information on
building and using library EPFs, see Chapter 6 and the Advanced
Programmer's Guide, Volume I: BIND and EPFs.

PROGRAMMING WITH EPFS VERSUS STATIC-MDDE FROGRAMS

Programming with EPFs is much easier than programming with static-mode
programs because you do not have to worry about memory allocation.
PRIMDS automatically takes care of this for you at execution time.

EPFs give you a choice of writing large applications in one of the
following two methods:

• The application may be one program image.

• The application may be separated into EPF programs and EPF
libraries. (EPF libraries are discussed in Chapter 6.)

You will find that building program applications as EPFs is easier and
faster than building them as static-mode programs.

You will also find it easy to convert existing static-mode programs to
EPFs. Indeed, many static-mode programs can be converted to EPFs
simply by relinking their object files with BIND. To decide whether a
given program is suitable for conversion, read the guidelines for
programming EPFs, given in the remaining sections of this chapter, and
the information about converting static-mode programs to EPFs, given in
Chapter 5.

GUIDELINES FOR FROGRAMMING WITH EPFS

When programming with EPFs, you should follow these guidelines in order
to meet the requirements of the EPF format:

1. Use only pure code in your programs. Prime's higher-level
language compilers produce only pure, reentrant code.
(Reentrant code means that the code does not change during
program execution; it is not se If-modify ing.)

2. If you are programming in Prime's Macro Assembler language,
PMA, make sure to separate your non-constant data areas (ECBs,
linkage data, and common data) from your executable code by
using the LINK and PROC pseudo-ops.
It is best to write pure code in FMA, as in other languages.
However, EPFs written in FMA can use impure code. If you do
use impure code in a program, you must make sure to flag it via
the IMHJRE option of the SEG or SEGR pseudo-op.

F i r s t E d i t i o n 4 - 2

PROGRAMMING WITH EPFS

3. Avoid using the RDIK$$ and OOMANL subroutines to read
information from the command line. Code the main routine of
your program to accept the command line as an argument rather
than having RDTK$$ retrieve command-line information. Also, do
not use OQMANL; instead, have your program call the CL$GET
subroutine to input a new command line from the terminal. Your
program may then parse the command line via the CMDL$A or
CL$PIX subroutine. For more information about these routines,
see the Subroutines Reference series.

Any EPF that expects arguments when invoked should have the
command line as the first of its main entrypoint arguments.
For information on accepting craranand lines as arguments to
EPFs, see Chapter 10.

4. Avoid using the PRIMOS subroutines that you would use to
terminate your static-mode programs:

• EXIT

• ERRPR$ with the K$NRTN key

• ERRSET

If you use these subroutines, your program cannot be restarted.
Instead, use an appropriate return or stop statement.
Appropriate statements for Prime-supplied language translators
are:

Language Return statement

C return or exitQ

COBOL, CBL STOP

F77, FTN RETURN or STOP

PL/1 RETURN, STOP, or END

Pascal END

PMA PRTN

5. To pause and then restart a program, use one of the following:

• A PAUSE statement

• The SIGNL$ subroutine with the PAUSES condition

• T h e P L / 1 S I G N A L s t a t e m e n t I

4 - 3 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

• The ERRPR$ subroutine with the K$SRTN key

• The GOMLV$ subroutine

Any of the above pauses your program, creates a new command
level, and allows the suspended program to be restarted via the
START command in the same way that static-mode programs are
restar ted.

6. Do not use the -PBECB option with the FTN compiler. If you
BIND an FTN program that was compiled with this option, BIND
produces the following warning message:

Warning: ECB MYPROG loaded into PROC segment.

If you receive this message, the program will not execute.

When used with compilers other than the FTN compiler, the
-PBECB option causes the procedure code for a module to be
treated as impure by BIND. Impure modules cannot be shared
among users, but a program containing impure modules will
execute.

7. Avoid using the GETERR, PRERR, and ERRSET subroutines to set or
retrieve error information. Instead, you should do one of the
following: use PRIMOS subroutines that return error codes
(instead of older versions that set the static error vector);
use the ERRPR$ subroutine to display error messages; or pass
returned error codes as an argument. For more information
about this last method of handling error information, see
Chapter 10.

For additional information about these guidelines, about writing EPFs
in PMA, and about EPF programming techniques in general, see the
Advanced Programmer's Guide, Volume I: BIND and EPFs.

GALLING PROGRAMS

EPFs, CPL programs, and static-mode programs can call other programs
while executing without returning to command level and without
affecting the calling program's environment. When the called program
finishes, execution continues within the initial (calling) program.

What Programs Can EPFs Call?

An EPF can call another EPF that can call yet another EPF. There is
only one limit on the number of programs that can be called in this

F i r s t E d i t i o n , U p d a t e 1 4 - 4

ircx;ramming with epfs

fashion (program A calling program B, which calls program C, and so
on). This imposed limit is called the command environment breadth
limit and is set by your System Administrator. (To find out what your
limit is, use the LIST_LIMITS command described in Chapter 9.) There
are no other limitations on EPF programs' calling other EPF programs.

EPFs can call CPL programs to the same level of breadth that they can
call other EPFs.

EPFs can also call static-mode programs. The following limits apply:

• Only one static-mode program may be active at any time.

• A program EPF can call a static-mode program, which can then
call other program EPFs. However, the latter program EPFs
cannot call static-mode programs.

What Programs Can CPL Programs Call?

CFL programs can call and be called just like EPFs. CPL programs and
program EPFs share many characteristics; they can call each other,
subject only to the restrictions on their use of static-mode programs
and on the command environment breadth limit set by the System
Administrator.

What Programs Can Static-mode Programs Call?

Static-mode programs can also call EPFs. The following rules apply:

• Static-mode programs can call EPFs.

• Static-mode programs can call CPL programs.

• Static-mode programs cannot call EPFs or CPL programs that call
other static-mode programs.

• Static-mode programs cannot call static-mode programs because
the second program overwrites the first.

For information about the routines that allow programs to call other
programs, see Chapter 10.

Limitations Involved With Static-mode Programs

The major limitation, which lies at the root of all other limitations,
is that you can have only one static-mode program in memory at any
given time. Each succeeding static-mode program overwrites its
predecessor.

4 - 5 F i r s t E d i t i o n

PROGRAMMER' S GUIDE TO BIND AND EPFS

Take, as an example, a CPL program named DISPLAY.CPL that invokes
SLIST, a static-mode command. If a static-mode program, <_ALI__DISFLAY,
calls DISPLAY.CPL, all is well up to the point where DISPLAY.CPL
invokes SLIST. At that time, SLIST overwrites CALI_J)ISPLAY. When
DISPLAY.CPL finishes running, it cannot return to its caller
(CALL_DISPLAY) because its caller no longer exists.

Because of this behavior, we can see that DISPLAY.CPL, even though it
is not in fact a static-mode program, behaves like a static-mode
program because it causes the overwriting of a previous static-mode
program.

A general rule of thumb, therefore, is that a program behaves like a
static-mode program if:

• It is in fact a static-mode program.

• It is an EPF that calls any program that behaves like a
static-mode program.

• It is a CPL program that calls any program that behaves like a
static-mode program.

(Note that this is a recursive definition.)

Any program that behaves like a static-mode program cannot be called by
another static-mode program.

F i r s t E d i t i o n 4 - 6

Converting to EPFs

This chapter shows you how to convert your existing static V-mode and
I-mode programs to EPFs. The following topics are covered in this
chapter:

• Reasons for converting your programs

• Programs that are not convertible

• Conversion procedures for programs

• Conversion procedures for complex SEG load sequences

WHY DO I WANT TO CONVERT TO EPFS?

There are several reasons for converting your existing V-mode and
I-mode programs to EPFs. As EPFs, they:

• Can be RESUMEd.

• Can be used as commands.

• Can be as large as you want — you do not have to worry about
space limitations. (There are limits defined by your System
Admin is t ra tor.)

• Will not overwrite each other in memory.

5 - 1 F i r s t E d i t i o n

PROGRAMMER' S GUIDE TO BIND AND EPFS

• Can be called from other programs.

• Are very easily built, using BIND.

• Are automatically shared among users. In addition, users who do
not have access to a runfile containing a program EPF also
cannot access the shared copy of the program.

• Allow you to use subroutine names longer than 8 characters.

• Can be both debugged via DBG and RESUMEd without requiring two
versions built using two different link sequences.

• Can contain program version information and a comment field,
such as for a copyright notice.

• May start up faster after a RESUME command, particularly if they
were kept as SEG runfiles previously. This ability, however,
depends on several factors, such as how much linkage data the
program contains.

• Can disable or alter the behavior of command preprocessing
features such as wildearding, treewalking, iteration, and name
generation.

• Can directly invoke PRIMDS commands, such as SPOOL, JOB, SLIST,
and ED.

The reasons for converting your static V-mode and I-mode programs to
EPFs are examined in the following sections.

EPFs and PRIMDS

EPFs are a special type of file format. An EPF is a Direct Access
Method (DAM) file that contains both an image of the procedure and a
description of the linkage for a given program. Previously, the
static-mode SEG runfiles and the static-mode .SAVE runfiles represented
only a memory image of both procedure and data. Following are the
advantages of having the EPF contain the procedure and the description
of the data for your program:

• PRIMDS automatically builds the linkage and resolves all
addressing requirements for you at runtime.

• Procedure code (read-only programming instructions) is paged in
directly from the file system partition instead of from a copy
on the paging partition as is done for static runfiles. Direct
paging gives better performance.

F i r s t E d i t i o n 5 - 2

CONVERTING TO EPFS

Suspending EPFs

Because PRIMDS places your EPF into areas of memory that it finds free
at runtime, you can keep or suspend several EPFs in memory at the same
time. You do not have to worry about these programs overwriting each
other and destroying each other's data, unless one or more of them are
errant programs.

EPFs Calling EPFs

With EPFs, an executing program can call another program without
returning to command level and without affecting the calling program's
environment. When the called program finishes, execution continues
within the initial program. You can use this facility to:

• Execute an external FRIMDS command from within a program

• Start another subsystem from within the current program

• Use collections of simpler programs to do more complex jobs

Building EPFs With BIND

Using BIND to create dynamic runfiles (EPFs) is easy because much cf
the work is taken care of automatically by FRIMDS. In addition, BIND
can be used either interactively or directly from the FRIMDS command
l ine.

EPFs and the Command Processor Stack

When you build an EPF, you issue no instructions about where the stack
for the EPF is to be placed, as is sometimes necessary when you use
SEG. For the EPF stack, FRIMDS uses the same stack used by the command
processor. To FRIMDS, the EPF looks and acts just like any other
subroutine.

CONVERSION FULES

The conversion of programs written in Prime's high-level languages
usually consists of linking the object modules with BIND instead of
with SEG. For PMA programs, however, special attention must be given
to the contents of each program. For information about how to write
PMA programs for use in an EPF, see the Advanced Programmer's Guide,
Volume I: BIND and EPFs.

5 - 3 F i r s t E d i t i o n

PROGRAMMER' S GUIDE TO BIND AND EPFS

WHAT CAN'T I CONVERT?

There are some programs that are not convertible to EPFs. You cannot
convert a static-mode program to an EPF if the program:

• Is an FTN program compiled with the -FBECB option

• Has self-modifying (impure) code and is not a PMA program
beginning with the SEG IMIFURE or SEGR IMIRJFiE pseudo-op

• Uses CALL EXIT as a Pause function

• Shares linkage segments

• Fails to declare all of the memory (stack, linkage, and
procedure) that it uses

• Is in V or I mode and uses R-mode or S-mode subroutines

• Expects the initial values of the A, B, or X registers to be
defined

• Depends on automatic initialization

FTN Programs Using the -PBECB Option

When you compile an FTN program with the -FBECB option, the resulting
object files share ECBs with executable code, mixing writeable storage
with read-only storage. (With EPFs, ECBs are modified when the program
is run because they contain pointers to link frames. The locations of
these link frames are not known until the program is run.) Because
EPFs have read-only procedure code, they cannot make full use of object
files that have been compiled with this option. In most cases,
recompiling the program without the -IBECB option allows the program to
be bound as an EPF.

Routines With Modifiable Data in the Program

Programs containing self-modifying code cannot be converted to EPFs,
unless they are PMA programs that begin with the SEG IMPURE pseudo-op
(for V-mode programs) or with the SEGR IMPURE pseudo-op (for I-mode
programs). Self-moditying code can change while a program is running.
EPFs must be pure code (that is, code that does not change while it is
running).

This restriction is most likely to apply to PMA programs, many of which
use impure code. However, it holds true for programs in any language.
An impure PMA module that uses SEG IMIURE or SEGR IMHJRE can be linked
into an EPF, but its procedure code is not shared among users and it is
not paged directly from the file system disk. Such a module is treated

F i r s t E d i t i o n 5 - 4

CONVERTING TO EPFS

similar to static data, incurring higher overhead costs for executing
the EPF.

Note that it is frequently possible to rewrite impure programs so that
they contain only pure code. After being rewritten in this fashion,
the programs can be converted.

Use of CALL EXIT as a Pause Function

The EXIT subroutine in PRIMDS is most often used by a program to signal
its completion. However, because static-mode programs remain in
memory, FRIMDS allows a START command, issued after a static-mode
program terminates via a call to EXIT, to continue program execution
immediately after the call to EXIT.

If your program depends upon the ability to be restarted after a call
to EXIT, you must first change the call to EXIT to be a call to OOMLV$
instead. Otherwise, when your program calls EXIT as an EPF, PRIMDS
treats the call as a permanent termination, and a subsequent START
command does not continue the execution of the program.

Note that repeated execution of a program that calls O0MLV$ without
issuing the START or F__LF_ASE__LEVEL commands between each execution may
result in messages such as:

Now at command level 5. To release use RLS. (listen_)

If the user ignores these messages and continues running a program that
uses GOMILV$ to exit, he or she will ultimately reach the limit of
command levels set by the System Administrator, and will be placed in
mini-command level. Chapter 7 describes mini-command level.

Programs Sharing Linkage Segments

Libraries in which some linkage has been made public cannot be
converted to EPFs. (Public means that the linkage resides in a shared
segment.) Making linkage public is usually done to minimize the
working set of a library. However, with EPFs, it is not possible to
put linkage into shared segments.

5 - 5 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

Failure to Declare Memory Used

Some static-mode programs allocate less common area, link-frame space,
or stack-frame space than they actually use. For example, some
programs declare arrays in common areas to be one element long, and
then proceed to use many more elements in the array. Some programs
also declare arrays in stack or linkage frames to be shorter than they
actually are. Built as static-mode programs, such programs may execute
successfully despite these tugs; built as EPFs, these bugs may
suddenly prevent the program from operating correctly.

Misdeclared Common Area or Link Frame: For example, a misdeclared
common area or link frame might not result in any adverse program
behavior when the program runs as a static-mode program, because the
memory used by the misdeclared area might be loaded as the last area of
a segment. Use of memory beyond the declared portion of the area
simply causes more of the segment to be used; only when the segment
overflows does the program misbehave.

However, built as an EPF, the program might share the segment that
contains its link frame or common area with one or more other programs.
In that case, when the program writes beyond the end of the declared
area, it may overwrite portions of another program. This is a subtle
error, because the errant program may in fact appear to work; the
overwritten program, when next run by the user, may suddenly fail to
work. (A clue to this occurrence is the fact that the overwritten
program worked the first time it was run, at which point it was first
loaded into memory; running it the second time causes PRIMDS to reuse
its memory image if it is still in memory, and by this time, portions
of it may have been overwritten.)

Misdeclared Stack Frame: Another example is a subroutine that
misdeclares the size of its stack frame. If it calls only internal
FRIMDS subroutines, or if calls to other subroutines occur just prior
to the return of the errant subroutine, it may work under most
circumstances as a static-mode program. (Again, only if its
misdeclared stack size causes its true stack frame to overflow a
segment will the program misbehave.) The reason the subroutine may
work is because the invocation of the dynamic linking mechanism takes
place on a different stack (the command processor stack) and hence does
not overwrite part of the errant subroutine's stack frame. In
addition, many of the internal PRIMDS subroutines (such as TNCU, TNOUA,
SRCH$$, and so on) also run on a different stack.

However, when a subroutine that misdeclares its stack frame size is
linked into an EPF, it may suddenly fail just after calling its first
subroutine if that subroutine is external to the EPF (a dynamic link).
This failure occurs because the dynamic linking mechanism runs on the
same stack as the EPF — the command processor stack — and hence its
data will probably overwrite portions of the data in the errant
subroutine's stack frame. The behavior of the errant subroutine at
this point is entirely unpredictable, but typically the result is the

F i r s t E d i t i o n 5 - 6

CONVERTING TO EPFS

signaling of a FOINTEF__FAULT$, ACCESS__VTOLATION$, ILLEGA__J5EGN0$, or
OUT_OF_BCUNDS$ condition.

If Your Program Misdeclares Memory: Therefore, if you suspect that
your program or a subroutine in your program does not adequately
declare all of the memory it uses for arrays or character strings, it
might be best for you to delay converting the program to an EPF until
you have checked the program thoroughly and corrected any
misdeclarations.

Programs That Call R-mode or S-mode Subroutines

A program that calls one or more subroutines written in R mode or S
mode cannot be built as an EPF. Moreover, such a program cannot be
built using SEG. (S mode is an archaic instruction set that predates R
mode and that is still supported by Prime systems.)

Requiring Defined Initial Values for Registers

The static-mode runfile provides for initial values for the A, B, X,
and K (Keys) registers. Some programs, particularly very old programs,
continue to use these initial values as configuration or option
selection information. For example, Prime's FIN and PMA translators
use the initial values of the A and B registers to select both
system-wide and user-specific compiler options, primarily for
compatibility reasons.

EPFs 6b not support the notion of definable initial values for these
registers, except for the K (Keys) register, which is defined by the
ECB of the main entrypoint of the EPF. Therefore, a program that
expects the initial values of the A, B, or X registers to be defined
cannot be converted to an EPF until it is redesigned so that it no
longer has that dependency.

If the first executable statement in a FORTRAN program is either CALL
GETA or CALL GETL, or if the first instruction in a FMA program is STA,
STX, or STL, then the program depends on the initial values of the A,
B, or X registers. You must determine what information is being passed
in the registers and redesign the program to acquire the information
from a different source, such as command line options and external
configuration information (such as a file), before you can convert the
program to an EPF.

Programs That Depend on Automatic Initialization

SEG typically initializes static data (including common areas) to all
zeros, unless otherwise specified by the program (via a DATA statement

5 - 7 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

in FORTRAN, an INITIAL attribute in PLl/G, and so on). BIND performs
no such initialization, which means that the initial values for
variables not initialized by the program are undefined. Therefore, a
program that depends on the automatic initialization by SEG may work as
a SEG-built program but fail when built with BIND. The proper solution
is to modify your program so that it uses the appropriate language
statements, attributes, or instructions to set initial values for all
variables before using them.

CONVERSION PROCEDURES

The first step in converting a static-mode program to an EPF is to make
sure that it does not fall into one of the categories of programs that
cannot be converted, listed above.

If it does fall into one of these categories, you have three choices:

• Rewrite and/or recompile the program so that it can be
converted.

• Replace the program with a new program, written so that it
follows the EPF guidelines given in Chapter 4.

• Continue to use the existing program as a static-mode program.

The second step is to consider whether the program follows the
guidelines for EPFs given in Chapter 4. If it does not follow these
guidelines, you might want to modify the program so that it does follow
them.

Once you are satisfied that your program is convertible to an EPF, you
BIND the program.

REWRITING LINKING SEQUENCES

One question may remain. You may be looking at an existing program in
which the program seems straight-forward enough, but the sequence of
SEG subcommands used to link and load the program is far from simple.
How do you convert this sequence of SEG commands into a sequence of
BIND commands?

The following section provides information to help you make this
conversion. It lists some of the SEG subcommands and either describes
their BIND equivalents or explains why the action they perform is not
needed with BIND. The section assumes that you have found the load
sequence used to build the program in a command file or in a CPL
program.

F i r s t E d i t i o n 5 - 8

CONVERTING TO EPFS

Invocation of SEG: There are five ways to invoke SEG. Two of them,
SEG and SEG -LOAD, are similar to typing BIND. The SEG pathname form
is replaced by RESUME pathname when working with EPFs. Instead of SEG
pathname 1/1, use EBG pathname and then type VPSD. Instead of SEG 1/1,
enter the VPSD command.

Use of SPLIT, MIX: A traditional SEG loading sequence that generates a
RESUMEable runfile is :

SEG
SPLIT
MIX
00 ABS 4000
S/LOAD prog 0
D/LOAD subrl
D/LOAD subr2

•

4000 4000

D/LIBRARY
RETURN
SHARE
prog
DELETE
QUIT

(The CO ABS 4000 subcommand is sometimes omitted.) With BIND, the
following subcommand sequence accomplishes the equivalent result:

BIND
LOAD prog
LOAD subrl
LOAD subr2

LIBRARY
FILE

If you wish a map, use the RESCLV_LDEFERR__D_CDMMDN subcommand
(abbreviated RDC) followed by the appropriate MAP subcommand of BIND
just prior to issuing the FILE subcommand.

The SEOCMDSEG Utility; The SEG>CMDSEG utility is used to generate a
RESUMEable program that invokes a SEG runfile. Use of CMDSEG is
totally unnecessary with an EPF; simply omit the step that runs
CMDSEG, and copy the .FUN file generated by BIND to wherever the .SAVE
file generated by CMDSEG was copied.

5 - 9 F i r s t E d i t i o n

PROGRAMMER1 S GUIDE TO BIND AND EPFS

The DELETE Subcommand: The DELETE subcommand of SEG is often used to
delete the SEG runfile version of a program after the creation of a
static-mode runfile version that is RESUMEable by using the SHARE or
SPLIT subcommands. In this case, it is not applicable with BIND,
because the .FUN runfile generated by BIND is RESUMEable.

The MAP (MIA) Subcommand: The MAP subcommand of SEG is available at
both SEG level and at the VLOAD processor level.

At SEG level, the MAP subcommand may specify the SEG runfile. In BIND,
you do this by issuing the command:

BIND -LOAD program.FUN -MAP [map-file] [map-option] -QUIT

This command replaces the following SEG sequence and its derivatives;

SEG
MAP program [map-file] [map-option]
QUIT

If the MAP subcommand does not specify the SEG runfile or if it is
issued at the VLOAD processor level, then you issue it in a similar
fashion in BIND, using the subcommand format shown in Chapter 8. If
you have finished linking modules and libraries, you should issue the
F£S(Xv^_DEFERR__D_(_OMMDN subcommand (abbreviated RDC) to cause BIND to
allocate the common areas not already initialized. Otherwise, the
common areas are listed as "deferred" in a BIND map, rather than being
shown with their addresses.

F i r s t E d i t i o n 5 - 1 0

CONVERTING TO EPFS

The following table correlates SEG map-option numbers with BIND
map-options, although the functionality is not precisely duplicated in
each case:

SEG Map Option BIND Map Option

0 (none needed)

1 -RANGES

2 -BASE

3 -UNDEFINED

4 (none needed)

6 -UNDEFINED

7 (none needed)

10 -NAMED_SYMBCL

11 (none needed)

In addition, in SEG, map files are written to file unit 13, and
repeated uses of the MAP subcommand directing output to a single file
causes information to be appended to the file by keeping the file open
on unit 13. Because the MAP subcommand of BIND overwrites whatever
file it is given as the output file, you must write each map to a
separate file. To produce a single file containing all the maps, you
can use the OONCAT command, described in the PRIMDS Commands Reference
Guide.

The MODIFY (MP) Subcommand: The MODIFY subcommand of SEG places the
user in a special MODIFY processor. Of the functions available in
SEG's MODIFY processor, only one has a corresponding BIND function —
the START (£T) subcommand. All of the other functions are not
available (and probably not necessary) when you use BIND. BIND does
not control the size or placement of the stack, deal with segments
below '4000, or patch runfiles.

The START subcommand of the MODIFY processor changes the starting
address of a SEG runfile by specifying the absolute segment number and
octal address of the new main ECB. In BIND, you use the MAIN
subcommand to specify the name of the new main entrypoint, as follows:

BIND
LOAD program. FUN
MAIN new-main-entrypoint
FILE [new-program.FUN]

5 - 1 1 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

The MODIFY subcommands are listed after the SEG subcommands and the
VLOAD processor subcommands, at the end of this section.

The PARAMS (PA) Subcommand: The PARAMS subcommand displays information
about the starting ECB address, stack placement, and initial register
values for a SEG runfile. An EPF has no stack placement or initial
register values. To display the starting ECB address, use the MAP
subcommand of BIND.

The PSD (PS) Subcommand: The PSD subcommand invokes the VPSD debugging
utility. BIND does not include a copy of VPSD because you cannot
execute a program from BIND as you can from SEG. Use DBG to restore
the EPF runfile and then use the PSD subcommand of EBG to examine the
r u n fi l e .

The QUIT (Q) Subcommand: The QUIT subcommand saves the SEG runfile,
returns to FRIMDS command level, and closes all open files. In BIND,
QUIT never saves the EPF runfile; instead, it queries the user as to
whether the user really wants to quit without saving the runfile.
Also, the QUIT subcommand of BIND does not close all open files,
because BIND does not make use of statically allocated open file units
as does SEG.

The RESTORE (REST) Subcommand: The RESTORE subcommand restores a SEG
runfile to memory. BIND never loads an EPF runfile into memory, nor
does the PRIMDS RESTOR command restore an EPF to memory. To place an
EPF in memory without executing it, either use DBG or write a program
that calls the EPF$ subroutines described in the Advanced Programmer's
Guide, Volume III: Command Evironment. If the RESTORE subcommand is
being used to modify the EPF (for example, to relink the object file),
use LOAD program.FUN followed by the appropriate RELOAD subcommands.

The RESUME (RE) Subcommand: The RESUME subcommand restores a SEG
runfile to memory and either begins to execute it or enters VPSD if 1/1
was specified on the RESUME command line. Use the FRIMDS RESUME
command to invoke an EPF runfile. Use DBG to restore an EPF runfile
followed by the VPSD subcommand of DBG to examine the runfile using
VPSD.

The SAVE (SA) Subcommand: At SEG level, the SAVE subcommand is the
same as the MODIFY subcommand. See the description of the MODIFY
subcommand in this section.

At the VLOAD processor level, SAVE writes the SEG runfile to disk, sets
the stack location, and optionally allows the user to specify the
initial values of the A, B, and X registers. In BIND, use the FILE

F i r s t E d i t i o n 5 - 1 2

CONVERTING TO EPFS

subcommand to both write the EPF runfile and exit to PRIMDS. The stack
is not placed ty BIND, and EPFs do not have initial values for the A,
B, and X registers.

Normally, you would use the FILE subcommand in BIND to replace a SAVE
subcommand followed by a QUIT subcommand in SEG. Delete SAVE
subcommands that have no arguments. However, if you want to convert a
program to an EPF and the program depends on the A, B, and X registers'
having initial values, you must redesign that interface so that it does
not depend on those registers.

The SHARE (SH) Subcommand: The SHARE subcommand prepares a SEG runfile
for sharing by generating static-mode runfile images of segments below
'4001. The images of segments below segment '4000, if any, are placed
into shared memory at system coldstart, usually by the PRIMOS.COMI or
C_PRMD file in CMDNCO. The image of segment '4000 serves as the
RESUMEable program image that uses the shared memory portions of the
program.

Because BIND produces EPF runfiles that are automatically shared by
PRIMDS, there is no corresponding subcommand, and no activities need
take place at system coldstart to allow an EPF runfile to be shared
among users. However, if your application is particularly large and
requires fast startup time, you might try comparing the performance of
your application built as an EPF to its performance when built as a
shared static-mode program before completely converting over. Some
shared static-mode applications may realize performance losses when
converted to EPFs, although this should be the exception rather than
the rule.

The SINGLE (SI) Subcommand: Similar to the SHARE subcommand, the
SINGLE subcommand prepares a large SEG runfile to be RESUMEable.
SINGLE does so by generating a static-mode runfile image of a
particular segment of the runfile. Because EPFs are directly
RESUMEable, there is no corresponding command in BIND.

The TTME (Tl) Subcommand: The TTME subcommand displays the date and
time of the last modification to a SEG runfile. There is no BIND
equivalent to this subcommand, but there is a PRIMDS command, LIST_EPF
-EPF_DATA, that displays, among other information, the date and time an
EPF was generated with BIND.

The VERSION (VE) Subcommand: The VERSION subcommand displays the
version number of SEG. BIND displays its version number each time you
invoke it. In addition, the FRIMDS command LIST_EPF -EPF_E_\TA displays
the version number of BIND used to generate the EPF, in addition to the
program version number if it is supplied by the user during the BIND
session.

5 - 1 3 . F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

The VLOAD (VL) Subcommand: The VLOAD subcommand places the user in the
VLOAD processor, which is where the loading of modules actually takes
place. VIOAD also specifies the name of the SEG runfile to be
generated or specifies the name of the SEG runfile to which new modules
are to be appended.

When you use BIND, replace the sequence:

SEG
VLOAD pathname

w i t h :

BIND pathname

Replace the sequence

SEG
VLOAD * pathname

with:

BIND
LOAD pathname. FUN

Subcommands used in the VLOAD processor are listed next.

The ATTACH (A) Subcommand: The ATTiOi subcommand attaches the user to
another directory. This subcommand is obsolete in SEG and is not
provided in BIND, because both SEG and BIND support pathnames in all
cases.

The AUTOMATIC (AU) Subcommand: The AUTOMATIC subcommand allows the
automatic generation of additional base areas during program loading.
There is no corresponding BIND subcommand because BIND automatically
provides a more sophisticated version of this feature.

The A/SYMBOL (A/SY) Subcommand: The h/SWBOL subcommand defines a
symbol in absolute memory and reserves space for it. In BIND, you use
the SYMBOL subcommand with a slightly different syntax: you specify
the complete address in segno/offset form, and you do not specify the
type of segment for the symbol. Initialized common areas are not
initialized during program loading if they are placed by using the

F i r s t E d i t i o n 5 - 1 4

CONVERTING TO EPFS

SYMBOL subcommand of BIND. See also the ALLOCATE subcommand of BIND
for reserving space with no concern for location.

The COMMON (00) Subcommand: The COMMON subcommand specifies the type
of segment into which a COMMON block is loaded. No corresponding BIND
subcommand exists because in BIND, COMMON blocks are always placed in
DATA segments.

The D/ Prefix: The D/ prefix specifies that the load subcommand it
prefixes is to be performed with the default parameters already
established via use of the P/ or S/ prefixes. These parameters
distinguish between segments (shared versus unshared). Because such
parameters are not needed with BIND, there are no prefixes in BIND.
Remove all D/ prefixes and all S/ or P/ parameter numbers, and
substitute the -FORCE, -PAGE, or -FORCEPAGE options for the F/ and P/
p refixes .

The EXECUTE (EX) Subcommand: The EXECUTE subcommand saves and executes
the SEG runfile. With EPFs, you issue the FILE subcommand of BIND to
save the runfile, then you use the RESUME command of FRIMDS to execute
the program.

The F/ Prefix: The F/ prefix specifies that all routines contained in
the object file specified in the load subcommand it prefixes are to be
forcibly loaded, thereby overriding RFL/SFL flags generated by the
binary editor, EEB. To accomplish this in BIND, use the -FORCE option
prior to the name of the object file.

The IL Subcommand: The IL subcommand, which is normally used when
building shared subsystems, loads the impure FORTRAN library IFTNLB.
There is no corresponding BIND subcommand, because BIND automatically
builds shared programs.

The INITIALIZE (IN) Subcommand: The INITIALIZE subcommand initializes
and restarts the VLOAD processor. To accomplish this with BIND, use
the QUIT subcommand of BIND followed by a subsequent invocation of
BIND.

The LIBRARY (LI) Subcommand: The LIBRARY subcommand loads libraries
from UFD LIB and optionally specifies parameters or loading options via
octal numbers and prefixes. In BIND, these options are specified by
placing the -FORCE, -PAGE, or -FORCEPAGE option in front of a library
pathname that is to be affected by that option. Octal number
parameters may be discarded because BIND does not use them when linking
l i b r a r i e s .

5 - 1 5 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

Note that a frequently used abbreviation of LIBRARY, LIB, does not work
in BIND, which uses LI as the abbreviation. Change LIB to either LI or
LIBRARY when you convert the build file for a program from SEG to BIND.

The LOAD (LO) Subcommand: The LOAD subcommand loads modules and
optionally specifies parameters or loading options via octal numbers
and prefixes. In BIND, these options are specified by placing the
-FORCE, -PAGE, or -FORCEPAGE option in front of a module that is to be
affected by that option. Octal number parameters may be discarded
because BIND does not use them when linking modules.

The MAP (MIA) Subcommand: See the description of the MAP subcommand
earlier in this list, in the SEG-level subcommands.

The MUX (MI) Subcommand: The MIX subcommand allows the loading of
linkage data and COMMON blocks in procedure segments primarily to allow
the generation of a RESUMEable version of the program. There is no
corresponding subcommand in BIND because EPFs are directly RESUMEable
and cannot combine linkage data and COMMON blocks with pure procedure
code. Omit this subcommand when you convert the build file.

The W Subcommand: The MV subcommand moves portions of the SEG runfile
from one memory location to another. There is no corresponding BIND
subcommand. The M subcommand is not a user command but is intended
primarily for the creation of shared libraries ty Prime. If your
application uses MV to create a shared library, you may wish to convert
the shared static-mode library to a library EPF. For information on
library EPFs, see Chapter 10 of this guide and also the Advanced
Programmer's Guide, Volume I: BIND and EPFs.

As far as what to do with the W subcommand and other subcommands and
FRIMDS commands used to generate, install, and initialize a static-mode
library, most of it is discarded when you convert it to a library EPF.
It is better to start from scratch by following the directions in the
Advanced Programmer's Guide, Volume I: BIND and EPFs.

The NSCW (NS) Subcommand: The NSCW subcommand suppresses warning
messages issued when a common area is defined by a loaded module to be
a certain size, then redefined by a subsequently loaded module to be
smaller. The BIND equivalent is the NO_CDMMDNL_WARNING subcommand
(abbreviated NCW). Because BIND allows subsequently linked modules to
redefine uninitialized common areas to be larger, the KO_CDMMD]07ARNIN3
subcommand inhibits warning messages for both smaller and larger
redefinition of common areas.

F i r s t E d i t i o n 5 - 1 6

C0NVERTIN3 TO EPFS

Note

BIND allows the redefinition of a common area to be larger only
if the common area is deferred. Deferral of common areas is
the default in BIND. However, once you issue the
F_3S(XiVE__EFERR__D_CDM1MDN subcommand, BIND no longer permits the
redefinition of a common area to be larger. Similarly, if you
link a module that initializes a common area, that common area
cannot subsequently be redefined to be larger; otherwise, BIND
rejects the attempt.

The OPERATOR (OP) Subcommand: The behavior of the OFERATOR subcommand
may vary from revision to revision and has no equivalent BIND
subcommand or option.

The P/ Prefix: The P/ prefix, together with a subcommand that loads a
module, specifies that the module is to be loaded starting on a page
boundary. In BIND, use the -PAGE option in front of the module or
modules to be started on a page boundary when you use the LOAD or
LIBRARY subcommands.

Note

The -PAGE option places only the procedure code portion of a
module on a page boundary. However, the link frame, containing
data, is not necessarily placed on a page boundary. With SEG,
both the procedure frame and link frame are loaded on page
boundaries, unless the FR or EA option is specified. _R
specifies that only procedure code is to be loaded on a page
boundary, and DA specifies that only linkage data is to be
loaded on a page boundary.

Therefore, use of the P/ prefix along with the ER option in SEG
is identical to use of the -PAGE option of BIND. Use of the P/
prefix with no option or with the DA option in SEG has no BIND
equivalent, because BIND cannot place link frames on page
boundaries.

In fact, BIND does place the link frame of a module linked with
the -PAGE option on a page boundary relative to the start of
the linkage data for the entire EPF. However, when the EPF is
executed, the linkage data is not likely to start on a page
boundary.

The PL Subcommand: The PL subcommand, normally used when building
shared subsystems, loads the pure FORTRAN library PFTNLB and the system
library SPLLIB. There is no corresponding BIND subcommand, because
BIND automatically builds shared programs.

5 - 1 7 F i r s t E d i t i o n

EROGRAMMER'S GUIDE TO BIND AND EPFS

The QUIT (Q) Subcommand: The QUIT subcommand saves the SEG runfile and
returns to PRIMDS command level. Use the FILE subcommand of BIND
instead, because the QUIT subcommand of BIND does not save the EPF
r u n fi l e .

The fi/SYMIBQL (F^SY) Subcommand: The R/SYMIBCL subcommand defines a
symbol and reserves space for it. ALLOCATE is the equivalent BIND
subcommand. No relative segment number or segment type is specified
with ALLOCATE.

The RETURN (RE) Subcommand: The RETURN subcommand saves the SEG
runfile and returns to SEG subcommand level from the VLOAD processor
level. There is no equivalent BIND subcommand, because BIND has only
one subcommand level.

The RL Subcommand: The RL subcommand replaces binary modules in the
current SEG runfile with new binary modules. The equivalent BIND
subcommand is RELOAD (abbreviated RL). The starting address, procedure
segment, and linkage segment are not specified with RELOAD. To enter
BIND in order to replace one or more binary modules in an EPF, type:

BIND
LOAD EPF-program.FUN

You must specify the .FUN suffix, or else BIND first looks for the file
EPF-program.BIN. After linking the EPF runfile in this fashion, issue
one or more RELOAD subcommands. You may have to reissue one or more
LIBRARY subcommands if the new versions of the binary modules call
subroutines in libraries that the old versions did not call.

The S/ Prefix: The S/ prefix, combined with one of the VLOAD loading
subcommands, specifies absolute segments into which the binary modules
are to be loaded. Because the S/ prefix is normally used to build
RESUMEable runfiles or shared subsystems, there is no equivalent BIND
subcommand, prefix, or option.

The SAVE (SA) Subcommand: The SAVE subcommand saves the current SEG
runfile. In BIND, the FILE subcommand both saves the EPF runfile and
exits BIND, and is therefore more equivalent to the QUIT subcommand of
SEG than to the SAVE subcommand.

The SAVE subcommand of SEG accepts as many as three arguments that
assign initial values to the A, B, and X registers. Because EPF
runfiles do not support the notion of initial register values, there is
no equivalent functionality in BIND. If your program depends upon the
initial values of the A, B, or X registers, you must redesign its
interface before converting your program to an EPF.

F i r s t E d i t i o n 5 - 1 8

CONVERTING TO EPFS

The SCW (SC) Subcommand: The SCW subcommand reactivates the warning
message issued when a common area is defined by a module to be a
certain size, and subsequently redefined as smaller. The BIND
equivalent is the COMMDN_WARNING subcommand (abbreviated CW). See the
description of the SEG subcommand NSCW, earlier in this section, for
more information about the redefinition of the size of a common area.

The SETBASE (SE) Subcommand: The SETBASE subcommand creates a base
area for address resolution linkages within a segment. There is no
equivalent BIND subcommand or option, because BIND automatically
creates base areas as it links modules.

The SFLIT (SP) Subcommand: The SPLIT subcommand breaks a segment into
procedure and data portions, and also loads the RUNIT module and a
stack overflow handler. There is no equivalent BIND subcommand because
EPFs always place procedure and data in separate segments, because EPFs
are directly RESUMEable, and because EPFs use the command processor
stack (which has its own stack overflow handler).

The SS Subcommand: The SS subcommand protects a symbol from being
deleted by the XPUNGE subcommand. There is no equivalent BIND
subcommand because BIND does not provide the ability to delete all
symbols (although you may use the C21ANGE_SYMEMX__NAME subcommand to
effectively remove specific symbols).

The STACK (ST) Subcommand: The STACK subcommand sets the minimum size
of the stack. Because EPFs use the command processor stack when they
execute, there is no equivalent BIND subcommand.

The SYMBOL (SY) Subcommand: The SYMBOL subcommand defines a symbol but
does not reserve space for it. There are three forms of the SYMBCL
subcommand:

Form 1: SYMBOL new-symbol-name old-symbol-name [offset]

Form 2: SYMBOL [new-symbol-name] segno [addr] [offset]

Form 3: SYMBOL [new-symbol-name] * [offset]

The equivalent BIND subcommand for Forms 1 and 2 is the SYMBCL
subcommand. However, the SYMBCL subcommand of BIND does not accept the
optional offset argument. SYMBOL may place a static symbol (for
example, SY MY_CDM 2037/0) .

There is no equivalent BIND subcommand for Form 3.

5 - 1 9 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

The SZ Subcommand: The SZ subcommand controls the use of sector zero
base areas in procedure segments. Because BIND automatically creates
base areas in sector zero and in other areas as needed, there is no
equivalent BIND subcommand.

The XPUNGE (XP) Subcommand: The XPUN_E subcommand deletes defined
symbols as indicated by an argument, and optionally deletes base area
information. There is no equivalent BIND subcommand. However, you may
effect ively delete specific defined symbols by using the
CHANGE_SYMBQL__NAME subcommand of BIND to change a symbol's name.

The NEK (NE) Subcommand: The NEW subcommand of the MODIFY processor
writes a partial copy of the SEG runfile to disk. There is no
equivalent BIND subcommand. To build a template with BIND, issue the
FILE subcommand at the desired point. This generates an EPF template
with the .FUN suffix.

Then, to use the template when building a program, link (with the LOAD
subcommand) the EPF template before linking any other modules. Make
sure that you specify the complete name of the EPF template (including
the .FUN suffix) to ensure that BIND links the EPF and not an object
(.BIN) file with the same basename.

The PATCH (PA) Subcommand: The PATCH subcommand of the MODIFY
processor writes a patch to disk. With BIND and EPFs, there is no
corresponding function or subcommand.

The RETURN (RE) Subcommand: The RETURN subcommand of the MODIFY
processor saves the SEG runfile and returns to SEG subcommand level.
Because BIND has only one subcommand level, there is no equivalent BIND
subcommand.

The SK Subcommand: The SK subcommand of the MODIFY processor specifies
the stack size, location, and an extension stack segment. There is no
equivalent BIND subcommand because EPFs use the command processor
stack.

The START (ST) Subcommand: The START subcommand of the MODIFY
processor specifies a new starting ECB for the SEG runfile. The
equivalent BIND subcommand is MAIN, which accepts the name of the new
main entrypoint, rather than its ECB address as a segment number/offset
pa i r.

The WRITE (WR) Subcommand: The WRITE subcommand saves a portion of the
SEG runfile to disk. There is no equivalent BIND subcommand. With
BIND, you can link an EPF template, link in additional modules as
desired, and then issue the FILE subcommand to write out the new EPF.

F i r s t E d i t i o n 5 - 2 0

Libraries and EPF
Libraries

Chapter 6 tells you what a library is, when a library is useful, and
how to use a library. The chapter also discusses shared and unshared
libraries and the two types of EPF libraries you create with BIND. For
additional information on EPF libraries, see the Advanced Programmer's
Guide, Volume I: BIND and EPFs.

WHAT IS A LIBRARY?

A library is a collection of separate routines bound together into one
single file. Each library has a table of entrypoints for each of the
contained routines. An entrypoint links a name with the actual
location of the routine. Therefore, programs external to a library may
call subroutines within the library at execution time. An example of a
library is the FORTRAN library, which contains code for such functions
as the SIN and COS routines. A library routine differs from a
nonlibrary routine only in that the library routine is kept in a
l ib rary.

WHEN IS A LIBRARY USEFUL?

When a procedure or function can be used by more than one program, it
should be collected with other routines that can be used by those
programs. The compiler for a specific language provides sane of its
support by calling routines in a specific library for that language.

6 - 1 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

Time is saved because library routines are compiled and prelinked
independent of the program that uses them.

There are many operations that are useful in a variety of programming
tasks. Among them are:

• System-level operations

• Commonly used language functions such as SIN, LOG, SQRT, MOD and
I/O handling

• Application tasks such as string handling, file sorting, and
system interrogation

Without libraries, you would have to write and debug your own routines
for every programming operation. This could waste large amounts of
programming time because you and your colleagues might independently
create separate routines that perform identical functions.

Libraries provide an answer to this problem. When a routine needed by
your program is kept in a library, you can include the library routine
in your program, thereby eliminating the need to write and compile a
routine of your own.

PRIMDS supplies you with a variety of standard libraries. These
libraries and the routines they contain are described in the
Subroutines Reference Guide.

In seme cases, you may find that you need libraries that are not
provided by Prime as standard software. Whenever a related set of
routines are used in numerous programs, it is a good idea to keep them
in a library.

HOW TO USE A LIBRARY

To include a library routine in a program:

• Reference the routine as needed in the program.

• Use the LIBRARY subcommand to name the library that contains the
routine when you BIND the program (that is, when you link the
library containing either the code for that routine or the
reference to the entrypoint name for that routine).

The system does the rest automatically.

F i r s t E d i t i o n 6 - 2

LIBRARIES AND EPF LIBRARIES

TYPES OF LIBRARIES

PRIMDS supports three types of libraries:

• Nonshared library. A nonshared library is a binary module (a
.BIN file) that contains the code for the routines you link into
your program.

• Static shared library. A static shared library keeps its code
in one or more shared segments in the range '2000 through '2777,
and uses an area of memory in segment '6001 or '6006. The
static shared library is loaded into memory when the system is
started up. To use this library, you link a binary module (a
.BIN file) that contains a list of named entrypoints for that
library. Therefore, a static shared library does not become
part of your program.

• EPF library. An EPF library is an EPF runfile (a .FUN file)
that contains the code for the routines your program uses. To
use this library, you link a binary module (a .BIN file) that
contains a list of named entrypoints for that library. This
type of library dynamically becomes part of your program at
execution time, but is not part of your program when your
program is not running.

To PRIMDS, the three types of libraries are quite different. The two
major differences are (1) that a routine from a nonshared library is
physically part of a runfile that uses it, whereas a routine from a
static shared library or an EPF library is a separate file; and (2)
that routines in a static shared library are always available in
memory, whereas routines in an EPF library can be accessed only when
that library is part of the user's entrypoint search list.

Nonshared Libraries

A nonshared library is a sequence of compiled routines that are kept
together in one .BIN file.

When you issue a LIBRARY subcommand that names a nonshared library, the
library you name is scanned. Any routine in the library that is
referenced in the program being linked is physically copied into your
runfile at execution time. (If the Set Force Load (SEL) flag is in
effect, then all routines are linked.) The resulting runfile looks
just as it would have if all such routines had been compiled by you and
linked with a LOAD subcommand.

Static Shared Libraries

With static shared libraries, the code for a routine is in a particular
location and it is referenced by using the entrypoint name for that

6 - 3 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

routine. Only one copy of a static shared routine exists on a system,
and it remains at all times within its shared library. All programs
that use a static shared routine execute this master copy, rather than
making copies of their own.

EPF Libraries

With EPF libraries, the code for a routine resides in a file containing
a library EPF runfile. The routine is referenced by using its
entrypoint name.

Prime supplies several library EPFs in the directory LIBRARIES* that
are used by most programs. Users may build their own library EPFs in
their own directories. They may allow other users to use routines in
these library EPFs ty granting the other users sufficient access to the
library EPF files.

Whether a library EPF resides in the LIBRARIES* UFD or in a user's own
directory, it is automatically shared by PRIMDS if more than one useris using it at a time.

LINKING A PROGRAM TO A LIBRARY ROUTINE BY NAME

You cannot create a direct connection between a program and the
location of a routine in a static shared library or an EPF library at
program link time. The reason is that such a connection requires the
address of the routine to be included in the program runfile. The
address of the routine, however, may change from one use of the library
to the next (particularly for EPF libraries).

Instead,^ FRIMDS dynamically connects a program to a routine in a staticshared library or an EPF library at program runtime by using dynamic
l inks.

How Dynamic Linking Works

A dynamic link is a special kind of pointer that contains the
information needed by PRIMDS to connect an executing program to a
library routine. When a static shared library or an EPF library is
linked into a runfile, the actual code in the library is not linked.
Instead, a dynamic link to each needed entrypoint in the library is put
into the program in place of the actual code for the routine. When
PRIMDS encounters this dynamic link while the program is running,
PRIMDS changes the link into a pointer to the actual code in the
library that corresponds to the entrypoint specified by the name in the
dynamic link.

F i r s t E d i t i o n 6 - 4

LIBRARIES AND EPF LIBRARIES

EPF LIBRARIES

EPF libraries have all of the same properties as program EPFs:

• They are allocated memory by PRIMDS at runtime.

• They execute in any private dynamic segment.

• Their program image is automatically shared if it is used by
more than one user at a time.

• Their linkage is automatically allocated and initialized ty
FRIMDS at runtime.

You can create your own personal libraries as EPF libraries. These
libraries have the same properties as EPF libraries supplied by Prime
in the LIBRARIES* UFD. Linkage for an EPF library is usually
initialized the first time a link is made to an entrypoint within the
l i b r a r y.

Unlike a program EPF, a library EPF cannot be RESUMEd. A library EPF
is dynamically linked to a program at program runtime. This linkage
occurs when the running program makes a reference to an entrypoint
within the library. The dynamic l inking mechanism in FRIMDS
automatically detects that the entrypoint is within an EPF library and
executes the library as an EPF. FRIMDS maps the library EPF into
memory and connects the running program to the desired entrypoint by
turning the dynamic link into an actual memory pointer. FRIMDS then
resumes program execution, retrying the reference to the entrypoint.
This time the desired subroutine is executed.

There are two different types of EPF libraries:

• Program class

• Process class

The two EPF library types are differentiated by their initialization
requirements. The following sections discuss the two library classes
and the rules involved in linking to libraries. How to create the two
types is discussed in the section HCW TO CREATE YOUR CWN EPF LIBRARY
below.

Program-class Libraries

A program-class library acts as if it is physically part of any runfile
that invokes it.

A program-class library is given a different linkage area for every
program that uses the library. The area is created the first time any
routine from the library is invoked, and it is retained until the
invoking program returns to PRIMDS, at which time the storage area is

6 - 5 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

deallocated. There is a separate storage area for every program that
is using a program-class library at a given time.

Say, for example, that you have two programs that will use the same
library. If the library is an EPF program-class library, it is given a
new linkage area for each of the two programs. If the library is a
static shared library, the library is reinitialized when the second
program links to it. Because there is only one linkage area for a
static shared library, this reinitialization corrupts the library data
for the first program.

Process-class Libraries

A process-class library is a special-purpose library that is
user-specific rather than program-specific. This type of EPF library
is called process-class because FRIMDS treats each logged-in user as a
single process.

PRIMDS allocates a new linkage area to a process-class library the
first time a program invokes any routine in the library during a
terminal session. All programs that run subsequently at any command
level use that same linkage area when they use that library. The
process-class library linkage area is retained until you log out, until
you reinitialize your command environment, or until you explicitly
remove the library.

Process-class libraries are useful for sets of entrypoints that need
their linkage initialized only once. This group includes routines
whose actions are determined solely by their input arguments, any
constant data needed, and any local variables (variables that are kept
on the stack).

Sometimes none of the routines in a library use any of the allocated
linkage area. Such a library is most efficient if it is process-class,
because PRIMDS omits nearly all checking of linkage area requirements
when a process-class library routine is invoked.

Interaction of the Classes of Library

A library routine may invoke other library routines. When one routine
calls another in the same library, no special action is needed. When
one routine calls another in some other library, PRIMDS may have to
create a linkage area for the second routine.

When the two libraries are of the same class, no problem arises,
because PRIMDS handles the linkage areas for both libraries in the same
way. When the two libraries are of different classes, problems can
arise because different types of libraries have different linkage
initialization requirements. For example, links from a process-class
library to a program-class library routine are not allowed. If you try

F i r s t E d i t i o n 6 - 6

LIBRARIES AND EPF LIBRARIES

to link to a program-class library routine from a process-class
library, PRIMDS issues an error message. The reason for this
restriction is that a process-class library allocates a new linkage
area only once, whereas a program-class library allocates a new linkage
area every time the program is invoked.

Links from a program-class library to a process-class library are
permissible. However, if both libraries are permitted to use each
other's routines indiscriminately, PRIMDS cannot tell when to create a
new linkage area for a library, because linkage areas are allocated
only as a result of encountering a dynamic link, and dynamic links from
a process-class library to a program-class library might_ already be
resolved even when a new program calls the process-class library.

Whenever a static-mode library is in use, linking to it is valid only
within the same program invocation that originally invoked the
static-mode library. If a new program (that was invoked at a higher
command level) invokes a static-mode library that is in use by another
program run by the user, the invocation is allowed, but any other
programs that have used the static-mode library are marked as "not
restartable" by PRIMDS because the data area for the static-mode
library has been changed.

HOW TO CREATE YOUR OWN EPF LIBRARY

You create an EPF library by using BIND. To create an EPF library
runfile, follow these three steps:

1. Designate the class of the library.

2. Link the binaries, designating the entrypoints of the library.

3. Save the library.

The following sections discuss these steps.

Step 1 — Designate the Class of the Library: To designate the class a
library is to have, use the LIBMDDE subcommand. The LIBMDDE subcommand
has the following format:

LIBMDDE f -PROCESS
-FROGRAM

Choose one of the following modes for the LIBMDDE subcommand:

• -FROCESS to indicate a process-class library

• -FROGRAM to indicate a program-class library

6 - 7 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

A process-class library is initialized only once for each process that
references it. A program-class library is initialized once for each
program invocation that references it.

The following example shows the use of the LIBMDDE subcommand to
designate a program-class library:

LIBMDDE -PROGRAM

Step 2 — Link the Binaries and Designate the Entrypoints: The runfile
of an EPF library contains a table of entrypoints. PRIMDS uses this
table to determine whether the runfile contains a routine referenced in
a dynamic link. A routine in an EPF runfile is not accessible for
dynamic linking unless its name appears in the entrypoints table for
that library EPF.

To designate a routine in a library EPF as an entrypoint for that
library, use the ENTRYNAME subcommand. The ENTRYNAME subcommand has
the following format:

|-ALLENTRYNAME { list-of-names
-NONE

This subcommand defines the names you give in list-of-names as
entrypoints into the library EPF runfile you are currently binding.
(You must link a routine before you can specify its name in
list-of-names.) Alternatively, you may use the -ALL option to cause
all successively linked subroutines to be made entrypoints; after
linking your modules, use the -NONE option to prevent subsequently
linked subroutines, such as those linked via the LIBRARY subcommand,
from becoming entrypoints.

For example:

ENTRYNAME INTEREST DIVIDEND

This specifies that list of entrypoints to the library EPF being built
includes INTEREST and DIVIDEND.

Another example:

ENTRYNAME -ALL
LOAD MIYSUBS
ENTRYNAME -NONE
LIBRARY PL1GLB
LIBRARY

F i r s t E d i t i o n 6 - 8

LIBRARIES AND LIBRARY EPFS

This specifies that all subroutines in the module MYSUBS should be in
the list of entrypoints to the library EPF being built. Subroutines in
the PL1/G library and in the standard system libraries, however, are
not included in the list of entrypoints to that library EPF, because
they are already entrypoints in other library EPFs supplied by Prime.

Step 3 — Save the Library: After you link a library EPF, save it as
you would an other EPF, by issuing the FILE subcommand:

FILE [EPF-llbrary-name]

The library EPF runfile is now in your directory with a .RUN suffix.
If you do not specify EPF-llbrary-name, BIND adds the suffix .RUN to
the first library routine you link with the LOAD subcommand.

HOW TO USE A LIBRARY EPF

To use a library EPF, you must do the following:

1. Create an entrypoint search list file to tell PRIMOS where on
the system your library can be found and where in the system
hierarchy you want it placed for your use.

2. Use the SET_SEARCH_RULES command to tell PRIMOS that you want
to use your own entrypoint search list rather than the system
search list.

3. When you build a program that uses the library EPF, use the
DYNT subcommand of BIND to specify which entrypoints in your
library the program will use.

The remainder of this chapter discusses these subjects. For more
detailed discussion, see the Advanced Programmer's Guide, Volume I:
BIND and EPFs. For more information on the SET_SEARCH_RULES command,
see chapter 9.

Creating an Entrypoint Search List File

An entrypoint search list file is a text file created with an editor
such as ED or EMACS. Create an entrypoint search list file in the
following manner:

1. Enter a line containing the keyword -SYSTEM.

2. Give the library EPF pathnames, one -per line, of the libraries
you have created.

6 - 9 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

3. File the search list. The filename must have the .ENTRY$.SR
s u f fi x .

For example:

OK, ED
INPUT
-SYSTEM
MTOFD^^^
MYuT^>I_EBRARIES>PAYROLL_LIBRARY
IcrT
EDIT
FILE M1YUTT)>MYLIB.ENTRY$.SR
CK,

Enabling an Entrypoint Search List File

Now, issue the SET_SEARCH_RULES command (abbreviated SSR) to tell
PRIMOS about the search list you have created. This command has the
following format:

SET_SEARCH_RULES pathname

You do not have to specify the .SR suffix in pathname, but you must
specify the .ENTRY$ suffix, or else PRIMOS does not recognize the
search list as being for entrypoints.

For example, to use the entrypoint search list created above, type:

OK, SET_S__^RCH_RULES MYUFD>MYLIB.ENTRY$

PRIMOS automatically inserts the system default rules at the top of
your search list (but it does not modify the on-disk copy of your
search list file).

You also may have your own libraries searched before the system default
entrypoint search list. To do this, place your library entries into
the entrypoint search list file before the -SYSTEM keyword, then use
SET_S__^RCH_RULES with the -NO_SYSTEM option. In this case, the command
line from the above example becomes

OK, SET_SEARCH_RULES MYUFD>MYLIB.ENTRY$ -NO_SYSTEM

For more information sett ing search l ists, see the Advanced
Programmer's Guide, Volume II: File System.

F i r s t E d i t i o n , U p d a t e 1 6 - 1 0

LIBRARIES AND EPF LIBRARIES

Disabling an Entrypoint Search List File

To disable your own entrypoint search list file and reinstall the
system entrypoint search list, use the SET_SEARCF__FULES command as
follows:

SET_SEAROi.FULES -DEFAULT ENTRY$

Permanently Enabling Your Entrypoint Search List File

When you issue the SET_SEAROi_FULES command, your search list is set
until one of the following occurs: you log out, you initialize your
command environment, or ERIMDS automatically initializes your command
environment as a result of an error condition. Your search list is
then reset to the system default search list.

To permanently enable your entrypoint search list file, place the
appropriate SET_SEARCF__FULES command at the top of your login file
(such as LOGIN.CPL) in your origin directory. If you do not have a
login file, create one as follows:

OK, ORIGIN
OK, ED
INPUT
SET_SEAR(_FjJULES MYUFD>M1_L IB. ENTRY $
(CR)
EDIT
FILE LOGIN. CPL
OK,

To change your search list after you have set up your login file in
this manner, you should modify your login file or the search list
itself (or both), and then use the INITIALIZE_aOMMAND_ENVIRONMENT
command (abbreviated ICE). This procedure prevents any problems that
might result from having a program use two versions of your entrypoint
search list. You should use this procedure rather using the
SET__SEARCF__FULES command to cause the changes to take effect.

Use of Private Entrypoint Search Lists With Phantoms or Batch Jobs

When you spawn a phantom (via the PHANTOM command) or submit a batch
job (via the JOB command), the process uses the system default search
list, SYSTEM>ENTRY$.SR, whether or not you have defined your own search
list and whether or not your login file defines one. (This default
situation may change in future revisions of FRIMDS.)

6 - 1 1 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

Therefore, if you wish a spawned phantcm or submitted batch job to use
your search list, you must place an appropriate SET_SEARCFL_FULES
command near the top of the command file or CPL program used to start
the phantom or job.

Using the DYNT Subcommand of BIND

When you build a program that will use a library EPF that you have
built, you can use the DYNT subcommand to define the entrypoints of
that library EPF. (You need to define only the entrypoints used by the
program being built.)
For example, if you are building a program that calls the entrypoints
CLEAR_SCRE_N, MDVELCURSOR, and HIGHLIGHT_FIELD, you issue the following
DYNT subcommand during the BIND session:

DYNT CLEAR_SCREEN MDVELCURSOR HIGHLIGHT_FIELD

The placement of the DYNT subcommand in the BIND session is not
important, although it is usually placed just before the MAP or FILE
subcommand. For long lists of subroutines, you may issue more than one
DYNT subcommand.

An alternative to the DYNT subcommand, explained in the Advanced
Programmer's Guide, Volume I: BIND and EPFs, involves building an
object file that is linked using the LIBRARY subcommand as with
Prime-supplied libraries. This alternative, although more complicated,
is recommended for libraries that will be used ty more than one
programmer.

F i r s t E d i t i o n 6 - 1 2

Troubleshooting

PROBLEMS YOU MAY RUN INTO

This chapter discusses some of the problems you may encounter with
EPFs. The following topics are covered:

• Running out of individual resources

• Running out of system resources

• Problems with in-use EPFs

RUNNING OUT OF INDIVIDUAL USER RESOURCES

When the System Administrator creates your login ID, he or she also
sets up your command environment limits. These limits are:

• Maximum number of command levels for suspending program
applications (command environment depth)

• Maximum number of simultaneous program invocations per command
level (command environment breadth)

• Number of static segments that can be allocated in your private
address space

• Number of dynamic segments that can be allocated in your private
address space

7 - 1 F i r s t E d i t i o n

PROGRAMMER1 S GUIDE TO BIND AND EPFS

Command Environment Depth

EPFs allow you to invoke a program, suspend it (by typing CONTROL-P),
and invoke another program, suspend that and resume the first one
without losing data in either program, as explained in Chapter 4. Each
time you suspend a program, you are placed at another command level so
that you can resume another program. The number of levels you can have
is limited either by the number the Project Administrator enters in
your user profile or by the number of levels the System Administrator
has set up as the project limits.

To find out what your current command level is, use the RDY command
without options. This command displays the OK prompt followed by the
clock time, CPU and I/O time used since the last prompt, your current
command level if greater than 1, and a plus sign if the level is static
mode. In the following example, the RDY command is issued after using
CONTROL-P twice:

O K , R D Y / * S t a r t a t c o m m a n d l e v e l 1 .
OK 13:37:01 1.290 0.303
O K , / * U s e O O N T R C L - P t w i c e .
QUIT.
OK,
QUIT.
O K , R D Y / * N o w a t c o m m a n d l e v e l 3 .
OK 13:37:11 0.154 0.000 level 3
OK,

During program development, you may wish to use the RDY -LONG command,
which enables the long form (described above) of the system OK, and ERI
prompts.

Command Environment Breadth

Programs can call other programs without changing command level, as
explained in Chapter 4 and as described in Chapter 10. The number of
programs that can be called from a program is limited by the number of
live program invocations per level that the Project Administrator
specifies. (The Project Administrator may have entered a specific
l imit in your user profile or project profile, or the System
Administrator may have set a project limit that is the same for all
users.)

Segments

When you invoke a program, FRIMDS allocates one or more segments in
your address space, where that program will run. FRIMDS allocates
static or dynamic segments, depending on the type of program to be run.

F i r s t E d i t i o n 7 - 2

TROUBLESHOOTING

Static-mode programs created by LOAD and SBG are loaded into predefined
static segments. They can be overwritten by any other static-mode
program that you invoke.

Programs created by BIND are called dynamic because they are loaded
into any unused dynamic segments in your private address space. They
can, therefore, co-exist with other dynamic programs. Library EPFs
also use dynamic segments. Each separate library EPF is allocated at
least one prooedure segment.

The Project Administrator determines the number of static and dynamic
segments each user is a l lot ted, e i ther indiv idual ly or on a
project-wide basis. The System Adininistrator may override project-wide
limits with system-wide limits.

Mini-command Level

If you exceed the number of command levels allotted to you, you are
placed at mini-command level. The following example shows the output
you see if you exceed your command-level depth and reach mini-command
l e v e l .

You have exceeded your maximum number of command levels.

You are now at mini-command level. Only the commands shown
below are available. Of these, RLS -ALL should return you to
command level 1. If it does not, type ICE. If this problem
recurs, contact your System Administrator.

Valid mini-commands are:

Abbrev Full name Abbrev Full name

c CLOSE COMO OQMOUTPUT
TMSTK DUMP_STACK ICE ImTIAI_[ZE_0CMIAND___WIRQN^l_2^,
LE LISTJEPF I L I_ESTJ_I___TS
LMC I_EST_MDX[_OOMMANDS LS LIST SEGMENT

LOGIN LO LOGOUT
P PM PR PRERR

RDY REN REENTER
RLS R___EASE_I__VEL REMEPF REMOVE_EPF
S START

OK,

7-3 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

At mini -command level the only commands you can execute are those '^k
listed in the display above. Your personal abbreviations are not
available. INITIAI_EZE_COMIMA1CLENVTRONMENT, LIST_MINI_0OMMANDS,
LIST_EPF, LIST_LIMITS, LIST_SBGMENT, and F__MOVE_EPF are described fully
in Chapter 8, the EPF Commands Dictionary. See the PRIMOS Comnands
Reference Guide for a description of the others.

Choosing the Right Mini-command: The following table lists some of
the actions you may wish to take, and the command you will need to use.

A c t i o n C o m m a n d

Keep a record of your session. 00MODTPUT
F i n d o u t w h a t y o u r l i m i t s a r e . L I S T _ L I M I T S - »
F i n d o u t w h a t E P F s y o u a r e u s i n g . L I S T J E P F ^ ^
Find out what segments you are using. LIST_SBGMENTS
Find out what commands are available. LIST_MINI COMMANDS

The following are actions you can take to get out , of mini-command
l e v e l .

A c t i o n C o m m a n d ^ - ^

Remove EPFs from your address space. REMOVE_EPF
Free unneeded dynamic segments. REMOVE_EPF
Release unneeded command levels. RELEASE_LEVEL
Return to a suspended program. START
Return to a suspended subsystem. START

REENTER

REMOVE_EPF alone does not take you out of inini-command level. To do "^
SO, you must follow REMOVE_EPF with REENTER, RELEASE_LEVEL, or START. f

The following table lists problems you may be having, and the commands
that help you to solve the problem.

F i r s t E d i t i o n , U p d a t e 1 7 - 4

Problem Command

Damaged command environment ICE
Exceeded depth RELEASE_LEVEL
Program error DUMP_STACK

PM
Used bad version of an EPF REMOVE EPF
Quit from program by mistake START
Quit from a subsystem by mistake START

REENTER
Unable to delete a file CLOSE
Unable to RESUME another EPF REMOVE EPF

TROUBLESHOOTING

r
r

Exceeding Command Depth: If you have used up the number of levels
allocated to you, you can use RELEASE_LEVEL once for each level you can
get rid of. (R__LEASE_LEvEL -ALL frees all levels.) Or, you can return
to the program you were previously executing, by using either REENTER
or START. See the PRIMOS Conmands Reference Guide to determine which
is appropriate.

Exceeding Command Breadth: If your application exceeds command level
breadth, the error code E$ECEB is returned to your program. To
minimize this problem, have the program call RD$CED, as documented in
the Subroutines Reference Guide, to return the current value of the
command environment breadth. The maximum value may be obtained via the
routine CE$BRD.

Exceeding Dynamic Segments: In most cases, you should not run out of
dynamic segments while you are using the system. However, if your
System or Project Administrator has set your limits to the miniimim
(16), it is possible to exceed your dynamic segment limit.

If the operating system tries to allocate dynamic data areas on your
behalf and runs out of segments in your address space, the message:

No space available from prooess class storage heap.

appears on the terminal and your environment is reinitialized. If this
occurred because you still had several segments allocated to suspended
programs, you are probably now able to use the command (or run the
program) that caused your environment to be reinitialized. If, on the
other hand, you had no other segments allocated, you should ask your
Project or System Administrator to allocate more dynamic segments for
you. If an Administrator changes your allocation, you need to log in
again for the new allocation to take effect.

An attempt to exceed the allowed number of dynamic segments may result
in the message:

7 - 5 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUILE TO BIND AND EPFS

Not enough segments, command-name (std$cp)

where command-name is the name of the command that overstepped the
limit. If you already have several segments allotted to other
programs, use RET.FASEJLEVEL -ALL to release these programs, then try
aga in . I f t h i s f a i l s , you r Sys tem Admin i s t ra to r o r P ro jec t
Administrator has to increase your dynamic segment limit for you to be
able to use this command. Also, if your site uses library EPFs
extensively, and all of these are included in the default entrypoint
search list ENTRY$.SR, you may run out of dynamic segments. In this
case, use private search lists for any search rules that are not used
extensively at your site.

If the program you are running fails, you may receive the messages:

STORAGE raised in PROGRAM_NAME at nnnn
(insufficient space for ALLOCATE)

ERROR raised in PROGRAM_NAME at nnnn
(no on-unit for STORAGE)

One of three things may be happening: If you already have several
segments mapped to your address space for other EPFs, use REMOVE_EPF to
free up more segments, and try again. If the error recurs, use
I_EST_LIMITS to determine how many dynamic segments you are allotted.
If it is a small number (less than 40), ask your Project or System
Administrator to allow you more dynamic segments. If you have
sufficient segments allotted to you, the program itself may have a
problem.

F-gceeding Static Segments: If some commands or utilities do not seem
to work and you are not holding segments over from a suspended program,
you probably need additional static segments.

The following message may be displayed in this case:

Error: condition ,'II__EGAL_SBGNO$M raised at 4000(3)/16722,
(Referencing 4062(3)/1654).
ER!

In this example, the static segment being referenced is segment 4062.
It is probably a dynamic segment, which cannot be accessed as a static
segment. Your System Administrator or Project Administrator must
increase your static segment limit for you to be able to use these
commands or utilities.

F i r s t E d i t i o n , U p d a t e 1 7 - 6

TRCUBLESHOOTING

FUNNING OUT OF SYSTEM RESOURCES

Occasionally you may not have overstepped your own allocation of
segments, and yet you may still be unable to acquire a segment. What
has probably happened is that the system itself has run out of
available segments for EPF storage allocation. This problem should
occur only when a system is heavily loaded. Use REMDVE_EPF to free
your own unneeded EPFs and try again. If this does not free enough
space, you may have to wait until other users have freed some space.

If the system is running out of segments, the error code returned to
the program is E$NMITS (No More Temp Segments). The error code returned
to the program if the system is running out of VMFA (Virtual Memory
File Access) segments is E$NMWS (No more VMFA segments).

If the system runs out of segments frequently, your System
Administrator may be able to increase either the number of VMFA
segments available or the total number of segments available to all
users.

Problems With In-use EPFs

If an EPF is in use, BIND and COPY automatically change the .FUN suffix
of the in-use file from .FUN to .RPn (where n is a digit that ranges 0
through 9, inclusive) so that it can use the .FUN suffix for the new
version of the EPF. If files already exist with all of the possible
suffixes (.RPO through .RP9), BIND and COPY check each .RPn file to
find one that is not in use. If one is found, you are asked whether it
should be deleted as in the following example.

OK, COPY LP. FUN CMDNCO>LD.FUN
EPF file "LD.FUN" already exists, do you wish to replace it? YES
ok to delete EPF file LD.RPO? YES
New version of EPF file LD.FUN now in place.
Old version of active EPF file now named LD.RPO.
OK,

You cannot delete an EPF that another user currently has mapped to his
or her address space. If you attempt this, you receive the error
message:

EPF file not active for this user. Unable to remove file NAME. (remepf$)
ER!

where NAME is the filename of the EPF you are trying to delete. To
delete the EPF, you must wait until the it is no longer in use.

7 - 7 F i r s t E d i t i o n

FROGRAMMER1 S GUIDE TO BIND AND EPFS

Problems With BIND

Because BIND has a built-in help facility, you do not have to exit from
BIND to get help. The following example illustrates its use.

OK, BIND
[BIND rev 19.4]
: LOAD EXTLOG
: HELP LIBRARY
Library <list of options and pathnames>

will bind the files in the list to the current EPF.
The options are the same as those for LOad.

: LI VAPPLB
: LI
BIND COMPLETE
: FILE
OK,

If you discover that a program linked with BIND does not work, you must
correct the problem and then relink the program. If the program aborts
or if you suspend it, you are placed at a lower (numerically higher)
command level. You can then use the DUMP_ST#0K command and other
debugging aids to trace the stack and examine the program's data areas.

If you relink a program that is mapped to another user's address space,
BIND renames the old version of the program, as shown in the following
example.

OK, BIND
[BIND rev 19.4]
: LOAD CIRCLE
: LIBRARY
BIND COMPLETE
: FILE
The file is in use. The old file is now called CIRCLE.RPO.
OK,

Appendix A contains a comprehensive list of BIND error messages.

Problems With Libraries and Search Rules

Static-mode Libraries: A static-mode library is reinitialized each
time it is invoked by a new program. This means that if a program
calls a static-mode library, then calls another program which also
calls the same static-mode library, FRIMDS refuses to allow the second

F i r s t E d i t i o n 7 - 8

TROUBLESHOOTING

program to call the in-use static-mode library; instead, it produces
an error message such as:

Error: condition "LINKAGE_ERROR$n raised at 4331(3)/1004.
Attempt to link to in-use static-mode library entrypoint "SFOQL$".

If, after running the first program, you quit to a new command level
and attempt to run the second program, FRIMDS reinitializes the
static-mode library and allows the second program to be run; it
assumes that you do not wish to continue executing the first program.
An attempt to REENTER or START the first program fails with the
following message:

Attempt to proceed to overwritten program image. (listen_)
ER!

Search Rules: You should not run into problems if you are using the
systen-defined search rules. (If you do encounter problems, contact
your System Administrator.) However, if you have set up your own
search rules, unpredictable runtime errors may result if there are
entrypoint-naming conflicts between libraries.

If you have set your own search rules, and discover that your program
is behaving strangely, try issuing the SET_SEARCH_FULES command with
the option -DEFAULT ENTRY$. This command restores the system-defined
search rules. Try running your program again.

You may have to modify the login file in your origin directory if you
cannot correct the problem.

Use NSED rather than ED or EMACS to edit the file:

OK, ORIGIN
OK, NSED LOGIN. CPL
EDIT

(NSED does not use the dynamic linking mechanism, and hence does not
use the entrypoint search list.) Now, examine and possibly modify your
login file as appropriate. If you modify your LOGIN.CPL file, use the
INITIALIZE_O0MM_^ND_ENVIR(_NMENT command (abbreviated ICE) to get it to
take effect.

7 - 9 F i r s t E d i t i o n

FROGRAMMER' S GUIDE TO BIND AND EPFS

Using EBG
If running your program produces strange results, you may wish to
compile the program in -DEBUG mode and step through the routine. After
you find the problem, you can correct it and then recompile and relink
the program.

Before you use EBG to examine an EPF, you should use the
IN_TIALIZ_LCDMÎ _^ND_E^ ÎRCM__NT command, described in Chapter 9, so that
you start with a clean slate.

Using DBG on an EPF is no different from using DBG on other programs.
To use EBG on a library EPF, compile it with the -DEBUG option and BIND
its modules as a program EPF. When you are satisfied that it is
working properly, BIND it again as a library EPF. For further
information on this procedure, see the Advanced Programmer's Guide,
Volume I: BIND and EPFs.

F i r s t E d i t i o n 7 - 1 0

PART III

Reference

BIND Subcommands
Dictionary

The basic subcoinmands given in Chapter 2 are sufficient for most of
your linking needs. There are times, however, when you may want or
need to use the more advanced features of BIND. For example, you may
need to use these advanced features in order to:

• Increase the size of a COMMON block

• Inhibit the check for redefinition of COMMON blocks

• Create dynamic links to library routines

• Use LIBRARY options to override default loading

• Define symbol names

This chapter lists alphabetically all subcoinmands and options available
with BIND. The chapter is divided into two sections:

1. BIND subcommands that govern the linking process (See Table 8-1
for a summary of these subcoinmands.)

2. BIND subcoinmands that govern command processing when the EPF is
invoked (See Table 8-2 for a summary of these subcommands.)

8 - 1 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

Table 8-1
Summary of BIND linking Subcommands

Command Abbreviat ion Function

ALLOCATE ALLOC Allocates storage for a symbol

OOMMQN_SYMBOL_NAME CSN Changes the name of a symbol

COMMENT Inserts comment line in the EPF

OOMMQNWARNING CW Checks size of COMMON
block definit ion

OQMPRESS Gives compressed version of EPF

DYNT Creates dynamic links

ENTRYNAME EN Defines entrypoints

FILE Completes processing EPF

HELP Gives help while in BIND

INITIALIZE_EATA IDATA Initializes data segments

LIBMODE LM Defines library EPF type

LIBRARY LI Links l ibraries

LOAD LO Links object files

MAIN Designates main procedure

MAP MA Creates memory map of the EPF

NO_OOMMQN_WARNING NCW Inhibits checking for
COMMON block redefinition

QUIT Terminates BIND session

RELOAD RL Replaces a binary file

RESOLVE_LM,'__̂ RED_OOMMQN RDC Forces space allocation
for deferred COMMON blocks

SEARCH_RULE_VERIFY SRVFY Provides full pathnames of
files being loaded

SYMBOL SY Defines a symbol

VERSION Inserts version map

First Edition, Update 1 8-2

BIND SUBCOMMANDS DICTIONARY

Table 8-2
EPF Command Line Subcoinmands

[Asterisks (*) indicate defaults.]

Command Abbreviat ion Function

* ITERATION ITR Performs iteration

* NAMBGENPOS NGP Performs name generation

NO_GENERATION NG Does not perform name
generation

NO_ITERATIQN NITR Does not perform iteration

NO_TREEWAI_C NTW Does not perform treewalking

NO_WILDCARD NWC Does not perform wildcard
expansion

* TREEWALK TV Performs treewalking

* WILDCARD WC Performs wildcard expansion

BIND

As explained in Chapter 2, you can create an EPF, using BIND in one of
two ways:

• You can run BIND at the PRIMOS command line. All control
arguments that you issue correspond to internal BIND
subcommands. You must precede each argument with a hyphen.

• You can run BIND interactively by invoking subcommands of BIND
in response to the colon (:) prompt.

BIND automatically saves the EPF in your directory and gives the EPF
the default name EPF-filename.RUN. If you do not specify EPF-filename,
BIND adds the suffix .RUN to the first object filename that you link
and saves the runfile in your directory. If you specify EPF-filename
when you use the FILE subcommand, BIND automatically adds a .RUN suffix
to the name you specify.

8-3 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

LINKING COMMANDS

▶ ALLOCATE symbol-name space

Abbreviation: ALLOC

Purpose: Use this subcommand to create and set the size of an external
static data area, or COMMON block, that is part of a standard library
routine. A standard library routine might contain a COMMON area that
is integral to the routine's function, but which is too small for some
desired application of the routine. For example, the buffer that holds
the data transferred by an I/O routine might be a COMMON area. This
area, though large enough for any expected use of the routine, might be
too small for some application in which unusually large records must be
read or written.

The ALLOCATE subcommand allocates a larger amount of space for the
restricting COMMON area. Before the routine that uses the area is
linked, name the area in an ALLOCATE subcommand, and give the desired
size. The ALLOCATE subcommand allocates storage for symbol-name (the
name of an external static data area) in one or more linkage segments.
symbol-name must not exist before you use this subcommand, space is
the number of 16-bit halfwords to allocate for symbol-name and may be
over a segment (65536 halfwords) in size.

▶ CHANGE_SYMBOL_NAME old-name new-name

Abbreviation: CSN

Purpose: Use this subcommand to change the name of an existing symbol
name, old-name is the name of an already loaded routine, new-name is
the name of the new routine you wish referenced ty calls that
previously have been linked to old-name. new-name must not exist
before you use this subcommand. Any modules linked after this
subcommand is issued that reference old-name will not be changed to
reference new-name. This subcommand affects only existing references,
not future ones.

For example:

LOAD PRQG1.FTN /* Load a FORTRAN module
L I B R A R Y / * L o a d t h e F O R T R A N l i b r a r i e s
CHANGE_SYMBOL_NAME EXIT GONE$ /* Change name of EXIT to GQNE$
L O A D F R 0 G 2 . 0 C / * L o a d a C m o d u l e
L I B R A R Y C C L I B / * L o a d t h e C l i b r a r i e s
L I B R A R Y / * L o a d s t a n d a r d s y s t e m l i b r a r i e s

F i r s t Ed i t i on , Upda te 1 8 - ^1

BIND SUBCOMMANDS DICTIONARY

The C program can now use its own version of the EXIT routine, whereas
the FORTRAN program uses the system version (a dynamic link to the
PRIMOS EXIT routine). To reference a symbol by its old name, change it
back to its former name before linking the module that references it.

▶ COMMENT [text-string]

Purpose: Use this siibcommand to insert a comment line (such as a
copyright notice) into your runfile, to be displayed by a LIST_EPF
-EPFJDATA command, text-string can:

• Have a maxiinum length of 80 characters

• Use any characters, including valid separators

This subcommand may not be used on the PRIMOS command line.

▶ ODMIMQN3ARNING

Abbreviation: CW

Purpose: Use this subcommand to check for the redefinition of COMMON
blocks. This is the default mode; this subcommand reverses the effect
of a NO_CDMMQN_WARNING subcommand. You receive a warning message if a
common or external static variable is:

• Redefined to be a size smaller than a previous definition.

• Redefined to be a size larger than a previous definition before
being allocated space in memory. (Typically, COMMON blocks are
deferred, and hence are not allocated space in memory until a
FILE or RESOLVEJDEFERFM)_00MMON subcommand is issued.)

The default is for BIND to issue warning messages concerning the
redefinition of the size of a common area.

^ COMPRESS

Purpose: Use this subcommand to delete information not used in
execution so that the runfile is compressed into a smaller file. The
information deleted includes BUO's symbol table and DBG's information
for debugging the program; as a result, the program may not be
reloaded and maps may not be generated from existing compressed EPFs.
Use this subcommand on programs that have already been debugged.

8 - 5 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

^ D Y N T l i s t - o f - n a m e s ' l

Purpose: Use this subcommand to create dynamic links to your personal
library routines or routines that may not be in the PFTNLB library.

To create a dynamic link to one or more library routines, list their
names as arguments to the DYNT snibcommand. Names that are already
defined are ignored. The DYNT references are added to the EPF just as
if they were in the object code linked via a LOAD or LIBRARY
subcommand. If a name given is already defined in the BIND session,
then a warning message is given only under the use of the set force
load flag (SFL). Dynamic linking is discussed in detail in the
Advanced Programmer's Guide, Volume I: BIND and EPFs.

^ ENTRYNAME
-AIL
l is t -of -names
-NONE

^ >

Abbreviation: EN

Purpose: Use the ENTRYNAME subcommand to define names as entrypoints
into the library EPF runfile you are currently binding. You must have
already issued the LIBMODE subcommand.

To specify entrypoints by name, use the LOAD subcommand to link the
modules containing the entrypoints first, then use the ENTRYNAME
list-of-names format to specify the entrypoints. Names not already
linked are rejected with warning messages and are ignored.

To specify all subroutines in one or more modules as entrypoints, use
the ENTRYNAME -ALL format. The -ALL option causes all subseguently
linked subroutines to be named as entrypoints. After linking the
desired modules, issue the ENTRYNAME -NONE subcommand so that
subseguently linked subroutines are not made into entrypoints. In
particular, issue the ENTRYNAME -NONE subcommand before issuing any
LIBRARY subcommands.

For example:

LIBMODE -PROGRAM
LOAD SAMPLE1
LOAD SAMPLE2
LOAD SAMPLE3
ENTRYNAME SAMPLE1 SAMPLE2 SAMPLE3
LIBRARY

F i r s t E d i t i o n , U p d a t e 1 8 - 6

BIND SUBCOMMANDS DICTIONARY

In the above example, the subroutines SAMPLE1, SAMPLE2, and SAMPLE3 are
entrypoints to the library EPF. Other subroutines contained in the
modules SAMPLE1, SAMPLE2, and SAMPLE3 are not made into entrypoints for
the library EPF, and therefore are callable only by other entrypoints
in the library EPF.

Another example:

LIBMODE -PROGRAM
ENTRYNAME -ALL
LOAD SAMPLE1
LOAD SAMPLES
LOAD SAMPLE3
ENTRYNAME -NONE
LIBRARY

In this example, all of the subroutines in modules SAMPLEl, SAMPLE2,
and SAMPLE3 are made entrypoints for the library EPF. The ENTRYNAME
-NONE subcommand disables the automatic generation of entrypoints
during the linking of the system libraries to prevent program errors.

▶ FILE [pathname]

Purpose: Use this subcommand to complete the processing of an EPF.
The FILE subcommand automatically resolves any deferred common areas,
writes the EPF into pathname.RUN, and then returns you to the PRIMOS
command level.

BIND files the EPF in your directory with a .RUN suffix. If you
specify pathname, BIND gives the runfile the name pathname.RUN. If you
do not specify pathname, BIND uses either the name you specified on the
BIND command line, or, if you specified no name, BIND uses the name of
the first object module that you linked as the pathname and adds the
suffix .RUN.

If you are using BIND on the command line, you do not have to issue
this snibcximmand. By default, BIND appends the -FILE option to the end
of the command line. Your runfile has either the name specified after
the BIND command or the name of the first linked object module. (BIND
adds the suffix .RUN.)

8 - 7 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUHE TO BIND AND EPFS
* >

H E L P s u b c o m m a n d - n a m e ^
-LIST

Purpose: Use this subcommand to get assistance while working with
BIND. If you specify -LIST, BIND displays a list of all BIND
subcommands and their abbreviations. For help with a particular
subcommand, type HELP followed by the subcommand name.

^ INITIALIZE_DATA [-OCTAL] initial_value

Abbreviation: IDATA

Purpose: Use this subcommand to initialize all uninitialized
areas for debugging purposes. IDATA initializes data segments at the
integer value of initial_value, a decimal value in the range
-32768 to 32767. If -OCTAL (abbreviation: -OCT) is specified, the
areas are initialized at an octal number from 0 to 177777.
Initialization generates a larger runfile and increases startup time;
therefore, it is recommended that this subcommand not be used for
production copies.

▶ LIBMODE -PROGRAM
-PROCESS

Abbreviation: LM

Purpose: This subcommand specifies the mode, or class, of the library
EPF being bound. If you specify -PROGRAM, the linkage area for the >_^
library is allocated the first time it is referenced by every program ^
you invoke. Therefore, a program-class library EPF may have several
copies of its linkage area allocated if several active programs are
using it at a time for one user. If you specify -PROCESS, the library
is given a linkage area only the first time a process references it. A
process-class library EPF is initialized only one time during a login
session, and only one copy of its linkage area exists at a time for one
user. (See Chapter 6 for an explanation of process-class and
program-class library EPFs.)

The following example shows the use of the LIBMODE subcommand to
designate a program-class library:

LIBMODE -PROGRAM

After you designate the class of library, and before you issue the FILE ,_^
subcommand, use the ENTRYNAME subcommand to create a table of 1
entrypoints to the library.

F i r s t E d i t i o n , U p d a t e 1 8 - 8

BIND SUBCOMMANDS DICTIONARY

^ LIBRARY [link-spec-1 [link-spec-2] .. .]

Abbreviat ion: LI

Purpose: Use this subcommand to link libraries. In most cases,
link-spec-1, link-spec-2, and so on are simply the names of the
libraries to be linked. However, link-spec-n has the format:

[l ink-opt ion] l ibrary-name

See the description of link-option in the LOAD snibcommand, described
next. In most cases, you will not be specifying any link-option.

Each library-name in a link-spec-n may be either an entryname or a
pathname. If library-name is an entryname, the LIBRARY subcommand
looks for the library in the system-supplied directory called LIB,
where all of Prime's standard libraries are kept. If library-name is a
pathname, the LIBRARY subcommand looks for the library in the location
you specify in the pathname.

If you do not supply any library-name, BIND links the standard system
library PFTNLB to the EPF.

^ LOAD link-spec-1 [link-spec-2] ...

Abbreviation: LO

Purpose: Use this subcommand to link the object files in object
modules to the current EPF. If the EPF has not already been given a
name, BIND uses the name you give in the first LOAD subcommand you
issue. BIND attaches a .RUN suffix to the EPF in your directory when
the processing of the runfile is finished.

The format of link-spec-n is:

[link-option] module-name

module-name is the pathname of an object module. If module-name is not
a pathname, the current directory is scanned for the name. If you have
two or more procedures in an object file, the procedures are linked in
the order in which it they appear in the file.

link-option allows you to control the manner in which all subroutines
in module-name are linked. Once a link-option is specified, it affects
all subseguent module-names specified on the same BIND subcommand line.

8 - 9 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

Option

f-FORCE 1 pathname
| - P O }

-PAGE 1 pathname
-PA J

-FORCEPAGE I pathname
- F P j

Meaning

Forcibly links all the procedure
code in the files you list in
module-name, thus overriding
the RFL/SFL flags generated ty
the binary library editor, EDB.

Links all of the files you list
in module-name beginning on
page boundaries (procedure code
on ly) .

Forcibly links modules in the
binary files you list in
module-name on page boundaries
(procedure code only).

If you do not use any options with the LOAD or LIBRARY subcommand, the
default mode is for BIND to link all routines within a file until no
unresolved references exist; this is the SFL (Set Force Load) flag.
If the file contains an RFL (Reset Force Load) flag, only those
routines previously referenced are loaded. (Regardless of the flag
setting, the first routine in a file is always linked, and no padding
is performed to place modules on page boundaries.)

Be aware that SFL will only forcibly load object text if there are some
outstanding unresolved references. If all references have been
resolved, nothing else is linked, whether you are in SFL or RFL mode.
In this case, use the -FORCE option, above. Also, be aware that RFL
will only load a module if it contains the definition of an unresolved
reference. For more information about RFL and SFL, see the Advanced
Programmer's Guide, Volume 1: BIND and EPFs.

Examples:

LOAD A

LOAD A -FORCE B

LOAD -FORCE C -PAGE D E

LOAD -FORCEPAGE F -FORCE G

/* links A normally (default)

/* links A normally and
force links B

/* force links C and links D
and E on a page boundary

/* force links F on a page
boundary and force links G

First Edition, Update 1 8-10

BIND SUBCOMMANDS DICTIONARY

^ MAIN routine-name

Purpose: Use this subcommand to designate the main procedure of an
EPF. Ordinarily, the main procedure of an EPF is the first routine
that is linked. To designate some other routine as the main prooedure,
you can name it in a MAIN subcommand. However, a procedure must
already be linked before it can be designated as the main procedure by
this command. For example:

BIND MYPROG -LOAD SUBR1 SUBR2 MYPROG -MAIN MYPROG -LIBRARY

If you do not link the main procedure first or name it in a MAIN
subcommand, execution of the EPF begins with whatever routine was
linked first, and probably causes the program to fail. Use the MAP
subcommand to see the main subroutine, displayed as START ECB on the
first line of the map. Look up the subroutine by comparing the START
ECB to the ECBs listed in the procedures section of the map.

With FTN, there is no such thing as a main procedure. There are only
subroutines, which may be called MAIN.

With PMA, you must specify the main ECB of a module in the END
pseudo-op. For example:

END MYPROG ECB

^ MAP [mapfile] [option[

Purpose: You use this subcommand to obtain a BIND map that gives you
the following information on the EPF under construction:

• A description of the layout of your program in memory.

• The relative placement of procedure, linkage, and common areas
with respect to one another in the EPF. (Segment numbers of
linkage segments are negative numbers and those of procedure
segments are positive. PRIMOS does not assign actual segment
numbers until program runtime, and you may display these with
the I_EST_EPF -SEGMENTS command. The negative-numbered segments
and positive-numbered segments in the LIST_EPF display
correspond to the same segments in the BIND map, and correlate
those segments with the actual segments assigned by PRIMOS.)

The arguments to the MAP subcommand are described below.

8 - 1 1 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

The Destination of the Map: You may specify one of the following
values for the mapfile argument:

V a l u e M e a n i n g

-TTY The map is displayed at the terminal. This is the
default mode if mapfile is not specified.

-SPOOL The map is spooled under the name epf-name.MAP,
where epf-name is the base name of the EPF under
construct ion.

pathname The map is written into the specified file. If the
f i l e a l r e a d y e x i s t s , i t i s o v e r w r i t t e n . ~ »

Option: When no option is specified, the full map without the command
processor flags is output. When an option is given, only the part of
the map designated by the option is output. The possible options are:

O p t i o n M e a n i n g

- F U L L S t a n d a r d m a p p l u s c o m m a n d p r o c e s s o r fl a g s - ^

-FLAGS Command p rocesso r flags cu r ren t l y se t

-RANGES Load ranges for each segment

- B A S E B a s e a r e a s

(-UNDEFINED) Symbols currently undefined- U N j

{-NAMED_SYMBOL) Named symbols sorted by name- N S Y j

Identifying Library EPF Entrypoints: MAP can also provide a list of
the entrypoints that you have used when you are building a library EPF
with BIND. MAP identifies these entrypoints ty placing an asterisk (*)
next to the entrypoint listed in the procedure area of the map. MAP
also displays a message to this effect at the bottom of the map. For
example:

F i r s t E d i t i o n , U p d a t e 1 8 - 1 2

BIND SUBCOMMANDS DICTIONARY

CK, BIND
[BIND Rev. 22.0 Copyright (c) 1988, Prime Computer, Inc.]
: LIBMODE -PROGRAM
Library is per program class.

LO MAIN
LO SUB
ENTRYNAME SUB

BIND COMPLETE
: MAP
M a p o f M A I N (M a p V e r s i o n 1)

START ECB: -0001/000000

S e g m e n t T y p e L o w H i g h T o p
-0002 DATA 000000 000073 000074
+0000 PROC 001000 001263 001264

Base Area: +0000 000100 000100 000777 000777

PROCEDURES:
Name ECB address Initial PB% Stack size Link size Initial LB%
.MAIN. -0002/000010 +0000/001062 000062 000044 -0002/177400

* SUB -0002/000054 +0000/001222 000062 000030 -0002/177444

DYNAMIC LINKS:
F$CB77 +0000/001240
F$ILDR +0000/001244
F$ILEW +0000/001250
F$ST0P +0000/001254
F$XFR +0000/001260

COMMON AREAS:

OTHER SYMBOLS:

UNDEFINED SYMBOLS:

Note: * indicates a library entry point
: FILE MY_LIB
CK,

See the LIBMODE and ENTRYNAME subcommands earlier in this chapter for
more information on entrypoints and library EPFs.

Producing a Retroactive Map: You are able to produce a map on an EPF
that has already been built. This is useful, for example, if you want
to debug an EPF but you do not have the map associated with it. For
example:

8 - 1 3 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

OK, BIND
[BIND Rev. 22.0.B2 Copyright (c) 1988, Prime Computer, Inc.]
: IO MAIN.RUN
BIND COMPLETE
: MAP MAIN.MAP
: FILE
CK, SLIST MAIN.MAP
M a p o f M A I N (M a p V e r s i o n 1)

START ECB: -0001/000000

S e g m e n t T y p e L o w H i g h T o p
-0002 DATA 000000 000073 000074
+0000 FROC 001000 001263 001264

Base Area: +0000 000100 000100 000777 000777

PROCEDURES:
Name ECB address Initial PB% Stack size Link size Initial LB%
.MAIN. -0002/000010 +0000/001062 000062 000044 -0002/177400

* SUB -0002/000054 +0000/001222 000062 000030 -0002/177444

DYNAMIC LINKS:
F$CB77 +0000/001240
F$ILER +0000/001244
F$ILDW +0000/001250
F$ST0P +0000/001254
F$XFR +0000/001260

COMMON AREAS:

OTHER SYMBOLS:

UNDEFINED SYMBOLS:

Note: * indicates a library entry point
OK,

Two restrictions in producing a map after the EPF has already been
built are:

1) You cannot load an EPF after loading any code.

2) You cannot get a map of the EPF if you used the COMPRESS
subcommand when the EPF was first produced, because COMPRESS
does not copy the symbol table (which BIND maintains to produce
maps) to the output file.

F i r s t E d i t i o n , U p d a t e 1 8 - 1 4

BIND SUBCOMMANDS DICTIONARY

 ̂NO_OQMMON_WARNING

Abbreviation: NCW

Purpose: Use this subcommand to turn off the checking for redefinition
of COMMON blocks. No warning messages are issued. An error message is
issued only if a common area is redefined as larger after being
allocated memory; the owning procedure is not linked.

^ QUIT

Abbreviation: Q

Purpose: Use this subcommand to end your BIND session without saving
or replacing the current EPF. If you have linked any code, BIND asks
you to verify whether or not you want to guit without filing the EPF.
Answer Y or YES if you are certain that you wish to leave BIND.

If you are using BIND on the command line with options, and no code has
been linked, BIND appends a -QUIT option at the end of the command line
for you. However, if you have linked code and you don't want to create
an EPF, you must specify the -QUIT option. For example:

BIND -LOAD MYPROG.RUN -MAP MYPROG.MAP -QUIT

▶ RELOAD link-spec-1 [link-spec-2] ...

Abbreviation: RL

Purpose: Use this subcommand to relink a binary file into an existing
EPF. You may use RL to replace a procedure in a larger program for
testing and debugging without having to rebuild the entire program.
The original copy of the procedure is not removed. The new version is
added as a whole to the end of the existing procedure code, and
appropriate pointers in the EPF are redirected.

The format of the RELOAD subcommand is the same as the LIBRARY and LOAD
subcommands, including the use of the link-option. See the LOAD
subcommand, above, for more information.

8 - 1 5 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

▶ RESOLVEJDEFERF__D_OaMMON

Abbreviation: RDC

Purpose: Use this subcommand to allocate space for common blocks that
have been deferred. Using this subcommand resolves pointers to COMMON
blocks. Use the RDC subcommand before a MAP subcommand to find the
locations of the common blocks in your map.

^ SEARGH_RULE_VERIFY J-ON \
(-OFF)

Abbreviation: SRVFY

Purpose: Use this subcommand to find out the full pathname of the
object being loaded into the program with BIND. When you use BINARY$
search rules, it is sometimes difficult to tell from which directory in
the fi le system a fi le is being loaded into your program.
SEARCH_RULE_VERIFY displays the full pathname of any .RUN and/or .BIN
object being loaded during the BIND operation; that is, SRFVY displays
which .BIN and/or .RUN files are being loaded from which directories.

The default is SRVFY -OFF.

SRVFY Example: Following is an example of the SEARCHJRULE_VERIFY
snibcommand. First, set your search rules with the S_7T_SEARCH_RULES
command to BINARY$.

OK, SSR BINARY$ -NS

Next, use the I_EST_SEARCH_RUI__S command to check your search rules;
this reveals the following pathnames under BINARY$:

List: BINARY$
Pathname of template: <SYSONE>TERRY.A>BINARY$.SR

<sysone>terry.a
<systwo>terry.b>programs

Finally, create an EPF with BIND using the SEARCH_RULE_VERIFY
subcommand. Notice that BIND gives you the full pathnames of the files
being loaded because SEARCH_RULE_VERIFY is enabled.

F i r s t E d i t i o n , U p d a t e 1 8 - 1 6

BIND SUBCOMMANDS DICTIONARY

CK, BIND
[BIND Rev. 22.0 Copyright (c) 1987, Prime Computer, Inc.]
: SRVFY -ON
: LO SYMBOLS
Loading: <SYSONE>TERRY.A>SYMBOLS.BIN
: LI CRT.T.TB
Loading: <SYSQNE>LIB>CRT.LTB.BIN
: LI
Loading: <SYSQNE>LIB>PFTNLB.BIN
BIND COMPLETE
: FILE
CK,

^ SYMBOL symbol-name definition [size]

Abbreviation: SY

symbol-name A name defined by the SYMBOL command

definition The name of a symbol already defined or of an
absolute address (segno/offset)

size The size in halfwords of symbol_name

Purpose: Use this subcommand to:

• Eguate the argument symbol-name to another symbol name that you
define in definition. If symbol_naine is a symbol already
defined, BIND displays an error message. However, i f
symbol-name is an undefined symbol, it becomes a defined symbol
after you use this subcommand. Using the SYMBOL subcommand in
this way allows references to one procedure to be reinterpreted
as references to some other procedure. (For example, SYMBOL ''
segno/offset allows you to reference blank common as defined by
F77.)

• Eguate the argument symbol-name to an absolute address that you
specify in definition as segno/offset. Any reference in your
program to a data item in symbol-name is now a reference to the
corresponding data item in segno/offset.

8 - 1 7 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

▶ VERSION character-string

Purpose: Use this subcommand to put a version indicator into your
runfile. character-string can have a maximum of 32 characters, but may
not contain valid separators unless the string is placed within single
quotation marks. In order to use a single quotation mark as a valid
separator, use two single quotation marks together. If you do not use
single quotation marks, character string cannot include the following
separators:

• Blanks

• Commas (,)

• Semicolons (;)

• S l a s h - a s t e r i s k s (/ *) 1

As the next example shows, the period and dash are valid characters:

VERSION 1.0-13

The following example illustrates how to include blanks and other valid
separators:

VERSION 'Version 22, sub-unit 6'

EXECUTABLE PROGRAM FILES AS COMMANDS

This section describes the BIND subcommands available for creating EPFs *^^
as commands. EPFs have the ability either to process optional features i
(wildcards, name generation, or treewalking) within a command line or
to let the command processor do it instead. An EPF command can also be
built in such a way that it acts only on certain targets, such as files
or access control lists.

Command line processing is done by calling the routines CL$PIX, CMDL$A,
or RDTK$$. These subroutines are described in the Subroutines
Reference series. For more information about command line features,
see the PRIMOS Commands Reference Guide. For information on command
line processing, see Chapter 10 of this manual and the Advanced
Programmer's Guide, Volume III: Command Environment.

F i r s t E d i t i o n , U p d a t e 1 8 - 1 8

BIND SUBCOMMANDS DICTIONARY

^ ITERATION

Abbreviation: ITR

Purpose: Use this subcommand with BIND to create an EPF in which the
command processor performs iteration when the runfile is invoked. This
is the default.

^ NAMGENPOS token-position

Abbreviation: NGP

Purpose: Use this subcommand with BIND to perform name generation on
the argument in the token-position on the command line when invoking
the runfile. The default is NAMGENPOS 1; the first token following
the tokens that invoked the program is the name generation token. For
example, in the command line RESUME MYPROG MYFILE.IN =.OUT, MYFILE.IN
is token 1, and token 2 becomes MYFILE.OUT.

^ NClGENERATION

Abbreviation: NG

Purpose: Use this subcommand to tell the command prooessor not to
perform name generation on the command line when invoking the runfile.
Tokens containing = are passed to your program without modification.

^ NO_ITERATIQN

Abbreviation: NITR

Purpose: Use this subcommand to create an EPF that tells the command
processor to suppress i terat ion when the runfile is invoked.
Parentheses on the command line are passed to your program without
modificat ion.

8 - 1 9 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUTHE TO BIND AND EPFS

^ NClTREEWALK

Abbreviation: NTW

Purpose: Use this subcommand to create an EPF that tells the command
processor not to perform treewalking when the runfile is invoked. If a
pathname has wildcard elements in intermediate portions of the
pathname, they are passed to your program without modification.

Note

If your program disables treewalking with the NOJIREEWALK
subcommand, but does allow wildcarding, then a pathname with
wildcard specifications in the final element of the pathname is
expanded by the command processor. However, this expansion ^^^
will not take place if an intermediate element of the pathname 7
has a wildcard character. In this case, the entire pathname is
passed to your program without modification.

^ nclwildcard
Abbreviation: NWC

Purpose: Use this subcommand to create an EPF that tells the command
processor not to process wildcard expansion when the runfile is
invoked. Instead, the final element of a pathname that contains the @,
+ , or characters is passed to your program without modification.

^ TREEWALK

Abbreviation: TV

Purpose: Use this subcommand to instruct PRIMOS to perform treewalking
when the runfile is invoked. This is the default mode.

^ WILDCARD [selection-options] [verification-option]

Abbreviation: WC

Purpose: Use this subcommand to create an EPF in which the command
processor expands wildcards when the EPF is invoked and to specify
default file system object selection and verification options. You
cannot use this subcommand on the PRIMOS command line.

F i r s t E d i t i o n , U p d a t e 1 8 - 2 0

BIND SUBCOMMANDS DICTIONARY

Use the selection-options for the WILDCARD command to specify the types
of objects to be selected for processing:

Option

-FILE

-DIRECTORY 1
- D I R j

-SEGMENT_DIRECIORY
-SBGDIR

-A0CESS_CATBGORY }
- A C A T j

-RBF

Objects processed

SAM, DAM, and CAM files

D i rec to r i es

Segment directories

Access categories

ROAM Files

If you do not specify any of the options, the default mode is for the
command to process all objects except for ROAM (-RBF) files.

You may also choose one of the following verify-options:

Option

-VERIFY
-VFY

-NO_VERIFY
-NVFY

Meaning

PRIMOS asks for verification
before each object matching
a wildcard is processed.

PRIMOS does not ask for
verification before each
object matching a wildcard
is processed.

If you do not specify any of the options,
verification is turned off (-NO_VERIFY).

the default mode is that

The following example shows the use of the the -FILE and the -VERIFY
options with the WILDCARD command:

WILDCARD -FILE -VERIFY

The WILDCARD subcommand selects the default options for a program, but
a user invoking the program can override any of these options. If the
user specifies at least one selection option during invocation, the
user 's select ion completely overr ides select ion-opt ions for that
invocation. Similarly, if the user specifies the -VERIFY option, then
verification of wildcard selections takes place even if you specified
WILDCARD -NO_VERIFY during the BIND session.

8-21 First Edition, Update 1

EPF Commands
Dictionary

OVERVIEW

This chapter is a dictionary of PRIMOS commands that relate to EPFs.
In alphabetical order, these commands are:

EXPAND_SEARCH_RULES

:_NITl_^ZE_OaMMAND_ENv^^

LISTJEPF

I_EST_LIBRARY_ENTRIES

LIST_LIMITS

LIST_MINI_OCMIANDS

LIST_SEARCH_RULES

LIST_SBGMENT

REMOVE_EPF

SET_SEARCH_RULES

You can use the OOPY command to replace an open EPF file with another
EPF file, renaming the replaced file. This chapter also explains how
to do this.

9-1 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

CHOOSING WHICH COMMAND TO USE

Table 9-1 provides a quick summary of the function of each of the
commands described in this chapter, to help you select the right one
for your purpose.

Table 9-1
The EPF Commands

Command Use

COPY Replace an open EPF with another EPF.

EXPAND_SEARCH_RULES Get the full pathname of a file system
object or search list.

INITIALIZE_OQMMAND_
ENVIRONMENT

Reset your command environment to the
state it is in when you first log in.

LISTJEPF List information about any or all of the
EPFs you are using.

LIST_LIBRARY_ENTRIES L is t i n fo rma t ion on en t r ypo in ts i n
library EPFs.

LIST_LIMITS Find out how many command levels, program
invocations per command level, and
private segments you can use.

LIST_MINI_OOMMANDS Find out what commands you can use at
inini-command level.

I_rST_SEARCH_RULES List the contents of your entrypoint
search list.

LIST_SEGMENT Find out which segments you are using.

REMOVE_EPF Remove an EPF from your address space.

SET_SEARCH_RULES Specify an entrypoint search list. You
need not do this unless you want to use a
personal search list.

First Edition, Update 1 9-2

EPF COMMANDS DICTIONARY

EPF MTNI-OOMMANDS

Your System or Project Administrator sets a limit on the number of
command levels you can use. If you exceed this limit, you reach
inini-command level. This is a command level from which you can use
only a limited subset of PRIMOS commands, called the mini-coininands.
Table 9-2 lists these 17 coinmands.

When you reach mini-command level, PRIMOS displays the message:

You have exceeded your maximum number of command levels.

You are now at mini-command level. Only the commands shown
below are available. Of these, RLS -ALL should return you to
command level 1. If it does not, type ICE. If this problem
recurs, contact your System Administrator.

Valid mini-commands are:

Abbrev Full name Abbrev FML1 name

c CLOSE com OOMOUTPUT
EMSTK DUMP_STACK ICE INITIALIZE OOMMAICLENVIRQNMENT
LE LISTJEFF LL LIST_I__MITS
LMC LIST MINI_OQMMANDS LS LIST SEGMENT

LOGIN LO LOGOUT
P PM PR PRERR

RDY REN REENTER
RLS RELEASE_LEVEL REMEPF REMOVE_EPF
S START

CK,

Until you return to a command level within your limit, you can use only
the mini-commands. In addition, your personal abbreviations are not
enabled while you are at mini-coinmand level. If you try to quit by
typing CONTROL-P or another terminal quit character, the following
message is displayed:

Terminal QUIT invalid now. (listen_)

This message is followed by the list of commands you can use at this
level, shown in the previous example. Another way to display this list
is to use the LIST_M__*I_OQMMANDS command. Table 9-2 also shows where
each mini-command is documented. This chapter covers several of them;
all the others are described in the PRIMOS Coinmands Reference Guide.

9-3 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

To find out more about mini-cominand level and ways to choose the best
mini-command for your purposes, see Chapter 7, which explains some
trouble-shooting te<3hnic£ues.

EPF-RELATED PRIMOS COMMANDS

This part of the chapter describes the ten EPF-specific PRIMOS
commands, in alphabetical order. The description of each command
starts on a new page.

F i r s t E d i t i o n , U p d a t e 1 9 - 4

EPF COMMANDS DICTIONARY

Table 9-2
The Mini-commands

Command
Abbreviat ion Command Name Described in:

C CLOSE PRIMOS Commands
Reference Guide

COMO OOMOUTPDT PRIMOS Coinmands
Reference Guide

EMSTK DUMP_STACK PRIMOS Coinmands
Reference Guide

ICE IOTTIA_1ZE_OO ÎMAND___W_RONMENT This chapter

LE LIST_EPF This chapter

LMC LIST_MINI_OOMMANDS This chapter

LL LIST_LIMITS This chapter

LS I_IST_SEGMENT This chapter

LOGIN LOGIN PRIMOS Coinmands
Reference Guide

LO LOGOUT PRIMOS Commands
Reference Guide

P PM PRIMOS Commands
Reference Guide

PR PRERR PRIMOS Commands
Reference Guide

RDY RDY PRIMOS Commands
Reference Guide

REMEPF REMOVEJEPF This chapter

REN REENTER PRIMOS Commands
Reference Guide

RLS R.Er,FASE_LEVEL PRIMOS Commands
Reference Guide

S START PRIMOS (_ommands
Reference Guide

9-5 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

^ EXPAND_SEARCH_RUI__S [options]

Abbreviation: ESR

Options: object_name [-LIST_NAME listname]
-SUFFIX suffix
-FILE
-DIRECTORY
-SEGMENT̂ DIRECTORY
-AOCESSJDATBGORY
-F__FERENCING_DIR pathname

Purpose: Use this command to provide the fully qualified pathname of a
specified file system object or search list.

object_name is used to specify the objectname to be expanded, and
object_name must include all suffixes. PRIMOS either returns the fully
qualified pathname to the terminal screen, or issues a message
indicating that the requested object could not be found.

Choosing Search Lists

___PAND_SEARCH_RULES uses one of your search lists to determine the
fully qualified pathname. Use the LIST_NAME option to specify the
appropriate search list. If you do not specify a KESTJNAME option,
EXPAND_S__^RjCH_RULES selects the appropriate search list based on the
suffix of the objectname.

The following list shows how PRIMOS selects search lists by default:

S u f fi x S e a r c h L i s t

. R U N C O M M A N D S

. S A V E C O M M A N D S

. C P L C O M M A N D S

O t h e r / n o s u f fi x A T T A C K S

EXTAND_SEARCH_RUIES Options

This section explains the options to EXPAND_SEARCH_RULES.

-AOCESS_CATEGORY
Specifies that the file system object sought is an access category.
This option allows you to limit the search to access categories.

F i r s t E d i t i o n , U p d a t e 1 9 - 5 a

EPF COMMANDS DICTIONARY

-DIRECTORY
Specifies that the file system object sought is a directory. This
option allows you to limit the search to directories.

-FILE
Specifies that the file system object sought is a file. This
option allows you to limit the search to files.

-LISTJNAME listname
Permits you to specify the name of the search list that PRIMOS
should use to locate the named object. If you do not specify
-LISTJNAME, PRIMOS selects the search list (ATTACKS or COMMANDS)
based on the suffix of the objectname. If you specify -LIST_NAME
as COMMANDS, PRIMOS supplies suffixes to the objectname in the
following sequence: .RUN, .SAVE, .CPL, no suffix.

-REFERENCINGJDIR pathname
Permits you to specify a search rule that PRIMOS substitutes for
t h e R E F E R E N C I N G _ D I R e n t r i e s i n t h e s e a r c h l i s t .
EXPAND_SEARCH_RULES uses this search rule to search for the file
system object.

-SBGhlENT_DIRECTQRY
Specifies that the file system object sought is a segment
directory. This option allows you to limit the search to segment
d i r e c t o r i e s .

-SUFFIX suffix
Specifies suffixes that PRIMOS appends to the objectname to conduct
the search. The suffixes must begin with a period (for example,

.RUN). You can specify a maximum of eight suffixes following a
-SUFFIX option. PRIMOS searches for suffixes in the following
Older: .RUN, .SAVE, .CPL. If no match is found with all
listed suffixes, PRIMOS searches for the object with no suffix.

You may invoke EXPAND_SEARCH_RULES as a CPL function. In this case,
EXPAND_SEARCH_RULES returns the fully qualified pathname to a variable
in the CPL program. Also, you can invoke ESR by a subroutine call.

9 - 5 b F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

^ IOTTIALIZE_CX)MMAND_ENVIRONMENT [-SERVER]

Abbreviation: ICE

Purpose: You use this command to reset your command environment to the
state that it is in when you first log in. You may want to do this if
you suspect that your command environment has been damaged in some way,
or if you are having trouble getting out of inini-command level.

Before using this command, issue the command CLOSE -ALL followed by the
command RE___ASE_LEVEL -ALL. These two commands may solve the problem
without reinitializing your environment.

When you use IiaTIALIZE_CDMMAND_ENV_RaNMENT, it performs the following
funct ions:

1. De-allocates any remote NPX slave processes active for your
user process.

2. Clears all X.25 virtual circuits open for you, except for the
remote-login virtual circuit, if any.

3. Closes all your files, including a OQMOUTPuT file if you have
one open.

4. Frees all your private dynamic and static segments.

5. Resets the Ring 3 command environment to an initial state.

6. Reattaches you to your origin directory (initial attach point).

7. Executes your login file (LOGIN.RUN, LOGIN.SAVE, LOGIN.OQMI or
LOGIN.CPL) in your origin directory. Your login file usually
sets up your abbreviations, defines your erase and kill
characters, sets global variables, and so on.

The -SERVER Option: When you use the -SERVER option, ICE performs the
seven operations listed above, and also performs the following:

1. Terminates all of the server's InterServer Communication (ISC)
sessions.

2. Terminates all PRIMIX child processes that are a part of the
server. This server is the server to which the caller's
process belongs.

3. Deletes all synchronizers and timers.

-SERVER is available only to a terminal process or phantom prooess; it
is not available to a child process.

F i r s t E d i t i o n , U p d a t e 1 9 - 6

EPF COMMANDS DICTIONARY

Subsystem Notification: IOTTIALIZEJDCM1ANDJENVIRCNMENT does not notify
other programs or subsystems that it is about to re-initialize your
environment. That is, IiaTIALIZE_CO#IAlCLENVIRONMENT terminates
programs that expect the CLEANUPS condition, without signaling the
condition, so that these programs have no opportunity to clean up.

The reason for this is that if a user's PRIMDS command environment has
been damaged, that user's command stack may also have been damaged. If
this has happened, signaling a condition such as CLEANUPS to give other
procedures a chance to perform last-minute abort processing before the
command environment is re-initialized is not likely to work. This
means that DmiALIZE_OOMMAND_ENv_RO^ like the LOGOUT command,
does not signal the condition CLEANUPS before unwinding the command
stack.

In the following example, a user reaches inini-coiranand level, and PRIMOS
automatically lists all the mini -coinmands. The user then gives the
STATUS command, which fails. Finally, the user initializes the command
environment.

CK,
QUIT.
You have exceeded your maximum number of command levels.

You are now at mini-commacd level. Only the commands shown
below are available. Of these, RLS -ALL should return you to
command level 1. If it does not, type ICE. If this problem
recurs, contact your system Administrator.

Valid mini-commands are:

Abbrev Full name Abbrev Full name

C CLOSE COMO COMOUTPUT
DMSTK DUMP_STACK ICE IOTTIAI_IZE_CXM4AND___WIRONMENT
LE LIST_EPF LL I_ESTJ_IMITS
LMC LIST_M__TC_OQMMANDS LS LIST_SEGMENT

LOGIN LO LOGOUT
P PM PR PRERR

RDY REN REENTER
RI_3 RELEASE_LEVEL REMEPF REMOVE_EPF
S START

CK, STATUS
I n v a l i d command "STATUS" - only mini level <_ommands accepted. (minScp
ER! 12T_TIAI_IZE_COMMAND_ENV_^^
CK,

9-7 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

^ LIST_EPF [pathname-1 [... pathname-8]] [options]

Abbreviation: LE

Options: -ACTIVE -AC
-OOMMAND_PROCESSING -CP
-DETAIL -DET
-EPF_DATA -ED
-HELP -H
-LIBRARY -LI
-NOT_ACTIVE -NA
-NOT_MAPPED -NM
-NO_WAIT -NW
-PROGRAM -PRG
-SEGMENTS -SEGS

Purpose: You use this command to display information on EPFs. The
LIST_EPF command can display information about EPFs whether or not the
EPF is currently mapped to your address space. That is, the command
works on two domains:

• Your address space. You can display information on any or all
of the EPFs that are mapped into your address space.

• The file system. You can display information on any EPF by
giving its pathname. If you want to find out about an EPF that
is not mapped to your address space, use the -NOT_MAPPED option,
described below.

Unless you use the -NOT_MAPPED option, LIST_EPF looks for an EPF that
is already mapped into your address space. If you give the pathname of
an EPF that is not mapped and do not specify the -NOT_MAPPED option,
LISTJEPF displays no information about that EPF.

You can use pathname-1 through pathname-8 to specify a maximum of eight
pathnames of EPFs. You need not include the EPF suffixes .RUN or .RPn,
(where n is a digit ranging 0 through 9.) These pathnames may be
simple filenames or full pathnames.

You may include wildcards within the final component of the pathname,
but LISTJEPF does not support treewalking or iteration.

F i r s t E d i t i o n , U p d a t e 1 9 - 8

EPF COMMANDS DICTIONARY

This example shows how to use LIST_EPF with a pathname:

OK, LIST_EPF <MKT>LIBRARIES*>._

1 Process-Class Library EPF.

(active) <MKT>LIBFARIES*>SYSTEM_LIBRARY. FUN

1 Program-Class Library EPF.

(active) <MKT>LIBRARIES*>FX)RTRAN_3D_LIBRARY. FUN

OKf

If you give the command with no options, LIST_EPF displays the full
pathname of the EPF file or files, and sorts the files by type. This
type may be one of:

• Program EPF

• Program-class Library EPF

• Process-class Library EPF

Within these types, LIST_EPF displays the names in alphabetical order
based on the filename of the EPF. The names of the EPFs displayed
include the .FUN or any of the .RR} suffixes, whichever applies.

LIST_EPF also displays the status of each EPF. The status of an EPF
may be one of these three: active, not active, or not mapped.

Active: PRIMDS treats an EPF as active if it is either executing or
suspended. This could mean one of the following:

• The EPF is a program or program-class library EPF that has been
suspended while executing.

• The EPF is a program-class library EPF that has been invoked by
a suspended program. Even though the library EPF itself is not
suspended, it is considered active as long as its invoking
program is active.

• The EPF is a process-class library, and has been initialized.
This is also called an in-use EPF.

Not active: PRIMDS treats an EPF as not active if it has completed its
execution and is still mapped into the user's address space.

Not mapped: FRIMDS classifies all other EPFs as not mapped.

9 - 9 F i r s t E d i t i o n

EROGRAMiyER1 S GUIDE TO BIND AND EPFS

If you use LISTJEPF with a filename rather than a pathname, the command
displays the full pathnames of all the EPFs with that filename, as this
example shows:

OK, LIST_EPF LP

2 Program EPFs.

(not active) <MKT>CMDNCO>LD. FUN
(not active) <MK2>LIZ>LD.FUN

OK,

If you do not specify a pathname, LIST_EPF displays information for all
EPFs currently mapped to your address space, as shown in the following
example:

OK, LIST_EPF

1 Process-Class Library EPF.

(active) <MKT>LIBRARIES*>SYSTE_1_LIBRARY. FUN

1 Program-Class Library EPF.

(not active) <MKT>L_BRARIES*>F0F3RA ÎDJL_BRARY.F_JN

3 Program EPFs.

(active) <MKT>CMDNCO>LD. FUN
(active) <MK2>LIZ>LD.FUN
(active) <MK2>LIZ>TIM>SAMJEL>SUB1>SUB2>SUB3>MYFR0G. FUN

OK,

If the file you specify in pathname does not exist, you see the message
shown in the following example:

OK, LIST.EPF SFENSER>FAERIE_QUE-N

No entries selected.

OK,

F i r s t E d i t i o n 9 - 1 0

EPF COMMANDS DICTIONARY

Options That Select the Type of EPF

To select the type or status of EPF to be listed, you can use the
following options:

Option Meaning

-ACTIVE
-AC

-NDT__ACTIVE
-NA

-not__map_ed
-NM

-PROGRAM
-FRG

-LIBRARY
-LI

Selects only active EPFs.

Selects only non-active EPFs.

Displays information on the EPF speci
fied by pathname. If no pathname is
specified, displays information on all
EPF files in the user's current
(working) directory.

Selects only program EPFs.

Selects only library EPFs.

The following examples show the use of the -ACTIVE and -NDT__ACTIVE
options.

OK, LIST_EPF -ACTIVE

1 Process-Class Library EPF.

(active) <MKT>LIBRARIES*>SYSTEM__LIBRARY. FUN

3 Program EPFs.

(active) <MKT>CMDNCO>LD. FUN
(active) <MK2>LIZ>LD.FUN
(active) <MK2>LIZ>TIM>SA>UEL>SUB1>SUB2>SUB3>MYFR0G. FUN

OK, LISTJEPF -NDTJVCTIVE

1 Program-Class Library EPF.

(not active) <MKT>LIBF__RIES*>FORI3?AN_IO_J_IBRARY.FUN

OK,

9-11 First Edition

PROGRAMMER'S GUIDE TO BIND AND EPFS

The -SEGMENTS Option

To find out what segments and linkage areas your EPFs are using,
specify the -SEGMENTS option, abbreviated -SEGS. For all EPFs that are
currently mapped into your address space, LIST_EPF -SEGMENTS displays:

1. The type of the EPF.

2. The status of the EPF.

3. The full pathname of the EPF.

4. The number of procedure segments being used by the EPF.

5. For each procedure segment in use, two numbers separated by a
colon. The number to the left of the colon is an even integer
greater than or equal to zero, preceded by a plus (+) sign.
The number to the right of the colon shows the actual segment
number used for the EPF procedure. The integer on the left
relates the actual segment number to the imaginary segment
number indicated by the same even integer in the BIND map for
the EPF.

6. The number of linkage areas being used by the EPF.

7. For each linkage area in use, two numbers separated by a colon.
The number to the left of the colon is an even integer less
than zero, preceded by a minus (-) sign. The number to the
right of the colon shows the segment/offset pair of the linkage
area used for the most recent invocation of the EPF. The
integer on the left relates the actual segment number to the
imaginary segment number indicated by the same integer in the
BIND map for the EPF.

If procedure segments or linkage areas have not yet been allocated to
the EPF, the phrase "not allocated" is displayed.

F i r s t E d i t i o n 9 - 1 2

EPF COMMANDS DICTIONARYr
^- The following examples show the use of the -SEGMENTS option, both with* a n d w i t h o u t a fi l e n a m e .

OK, LIST_EPF -SEGMENTS

1 Process-Class Library EPF.

(active) <MKT>LIBRARIES*>SYSTEM_LIBRARY. FUN
2 p rocedure segments : +0 :4152 +2 :4153
2 l i n k a g e a r e a s : - 2 : 4 3 7 6 (0) / 0 - 4 : 4 3 7 7 (3) / 6 7 4

1 Program-Class Library EPF.

(not active) <MKT>LIBRARIES*>PORroAN_IO_LIBRARY.FUN
1 procedure segment: +0:4154
1 l inkage area: (not a l located)

3 Program EPFs.

(active) <MKT>CMDNC0>LD. FUN
1 procedure segment: +0:4156
1 l inkage area: -2:4377(3)/113474

(active) <MK2>LIZ>LD.FUN
1 procedure segment: +0:4157

—More—(CR)
1 l inkage area: -2:4377(3)/34742

(active) <MK2>LIZ>TIM>SAMUEL>SUB1>SUB2>SUB3>MYPR0G. FUN
1 procedure segment: +0:4155
1 l inkage area: -2:4377(3)/34066

OK, LIST_EPF MYPROG -SEGMENTS

1 Program EPF.

(active) <MK2>LIZ>TIM>SAMJEL>SUB1>SUB2>SUB3>MYIR0G. FUN
1 procedure segment: +0:4155
1 l inkage area: -2:4377(3)/34066

OK,

9 - 1 3 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

The following example shows the use of the -SEGMENTS and the
-NDTJIAPIED options together, for a user attached to the directory
CMDNCO.

OK, LIST_EPF COPY -NDT_MAPFED -SEGMENTS

1 Program EPF.

(not mapped) <MKT>CMDNC0>COPY.FUN
1 procedure segment: (not allocated)
1 l i n k a g e a r e a : (n o t a l l o c a t e d)

OK,

The -Q0MMAND_PROCESSING Option

To look at the state of command processing features for a program EPF,
use the -O0MMAND_PROCESSING option, abbreviated -CP. The LIST_EPF
-aOMMAND_FROCESSING command displays the full pathname of the EPF and,
for a program EPF, displays command processing features, such as:

• The type of file system objects on which the EPF operates

• Whether the command processor should process wildcarding,
treewalking, or command iteration for the EPF concerned

• The name generation position for the EPF

F i r s t E d i t i o n 9 - 1 4

EPF COMMANDS DICTIONARY

For the first two categories, the presence of the terms indicates that
the feature is enabled. Ccmmand processing information is not relevant
for library EPF, and is not displayed. For example:

OK, LIST_EPF -CPMMAND_PROCESSIN_

1 Process-Class Library EPF.

(active) <MKT>LIBRARIES*>SYSTEM_LIBRARY. FUN

1 Program-Class Library EPF.

(not active) <MKT>LIBRAR_ES*>FORTRAN_]D_J_IBRARY.FUN

3 Program EPFs.

(active) <MKT>CMDNCO>LD. FUN
c o m m a n d o p t i o n s : t r w l k , i t e r fi l e , d i r , s e g d i r , a c a t 1

(active) <MK2>LIZ>LD.FUN
c o m m a n d o p t i o n s : t r w l k , i t e r fi l e , d i r , s e g d i r , a c a t 1

(active) <MK2>LIZ>TIM>SAMJEL>SUB1>SUB2>SUB3>MYPR0G. FUN
c o m m a n d o p t i o n s : (n o n e) (n o n e) 1

OK,

The -EPF_DATA Option

To display general information on an EPF, use the -EPF_DATA option,
abbreviated -ED. The LIST_EPF -EPF_DATA command displays the following
information for the specified EPF or EPFs:

1. The type, status, and full pathname of the EPF

2. The version of BIND used to create the EPF

3. The date on which the EPF was bound

4. The program name of the EPF

5. The user version of the EPF

6. The contents of the EPF comment field

7. The number of debugger segments being used by the EPF

9 - 1 5 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

For example:

OK, LIST_EPF -EPF_DATA

1 Process-Class Library EPF.

(active) <MKT>LIBRARIES*>SYSTEM__LIBRARY. FUN
bind version: 19.4.0AV
date of binding: 84-10-17.15:38:28.Wed
program name: SYSTEM__LIBRARY
user version: (none)
comment: Copyright (C) 1983, Prime Computer, Inc.,

Natick, Ma. 01760 All rights reserved
debug segments: 2

1 Program-Class Library EPF.

(not active) <MKT>L]BFARIES*>FOFm?AN_IO_J_IBRARY.FUN
bind version: 19.4.0AV
date of binding: 84-10-17.15:40:52.Wed
program name: F0RTRA1SLID__LIBRARY
user ve rs ion : 19 .4 .10TR
comment: Copyright (C) 1983, Prime Computer, Inc.,

Natick, Ma. 01760 All rights reserved
debug segments: 1

—More— (CR)

1 Program EPF.

(active) <MK2>LIZ>TIM>SAMaEL>SUBl>SUB2>SUB3>MYFROG. FUN
b i n d v e r s i o n : 1 9 . 4 . 0 A E
date of binding: 84-05-31.14:43:40.Thu
program name: POWERS
u s e r v e r s i o n : (n o n e)
c o m m e n t : (n o n e)
debug segments: 1

OK,

If the EPF was bound by a version of BIND that cannot supply data on
items 2 through 6, this message is displayed instead:

EPF data not available.

(Some FRIMDS commands were created as EPFs prior to Rev. 19.4; the
version of BIND used to create them may not supply this information.)

F i r s t E d i t i o n 9 - 1 6

EPF COMMANDS DICTIONARY

The -DETAIL Option

To display all information on an EPF, use the -DETAIL option,
abbreviated -DET. This option displays all attributes for each entry
selected. These attributes include those displayed by the
-CDMMANDJEROCESSING, -EPF_E&TA and -SEGMENTS options. For example:

OK, LISTJEPF -DETAIL

1 Process-Class Library EPF.

(active) <MKT>LIBF̂ RIES*>SYSTEMJ_IBRARY. FUN
2 procedure segments:
2 linkage areas:
bind version:
date of binding:
program name:
user version:
comment:

debug segments:

+2:4153
-4:4377(3)/674

+0:4152
-2:4376(0)/0

19.4.0AV
84-10-17.15:38:28.Wed
SYSTEM_LIBRARY
(none)
Copyright (C) 1983, Prime Computer, Inc.,
Natick, Ma. 01760 All rights reserved
2

1 Program-Class Library EPF.

(not active) <MKT>LIBFARIES*>FOFm?AN_K)_J_IBRARY.FUN
1 procedure segment: +0:4154
1 linkage area:

—More— (CR)
bind version:
date of binding:
program name:
user version:
comment:

debug segments:

(not allocated)

19.4.0AV
84-10-17.15:40:52.Wed
PORTRAM_IO_JJIBRARY
19.4.10TR
Copyright (C) 1983, Prime Computer, Inc.,
Natick, Ma. 01760 All rights reserved
1

1 Program EPF.

(active) <MK2>LIZ>TIM>SAMaEL>SUBl>SUB2>SUB3>MYFROG. FUN
1 procedure segment: +0:4155
1 linkage area:
bind version:
date of binding:
program name:
user version:
comment :
debug segments:
command options:

-2:4377(3)/34066
19.4.0AE
84-05-31.14:43:40.Thu
POWERS
(none)
(none)
1
wldc rd , t rw lk , i te r fi le ,d i r, segd i r,aca t

OK,

9-17 First Edition

PROGRAMMER'S GUIDE TO BIND AND EPFS

The -NO_WAIT and -HELP Options

To control screen scrolling, use the -ND_WAIT option, abbreviated -m.
To remind yourself of the syntax of the command, use the -HELP option,
abbreviated -H.

The -NOJWAIT option enables terminal screen scrolling. This option
suppresses the —More— prompt that is otherwise given at the end of
each 23 lines of display.

If you do not specify -NO_WAIT, FRIMDS prompts you before scrolling the
terminal screen. To display the next screen of output, press RETURN or
enter Y, YES, OK, or NEXT. To exit from the command, enter N, ND, Q,
or QUIT.

The -HELP option displays the syntax of LISTJEPF. This display is also
printed if PRIMDS encounters an error while parsing the command.

F i r s t E d i t i o n 9 - 1 8

EPF COMMANDS DICTIONARY

^ LISTJ_IBRARY_ENTRIES [pathname-1 [... pathname-8]] [options]

Abbreviation: LLFJSIT

Options: -ENTRYNAME
-HELP
-NDJWAIT

-H

Purpose: You use this command to display alphabetically sorted
selected entrypoints in a library EPF, where pathname identifies the
library EPF. You can use the optional entrynames to select the library
entrypoints to display. The entrynames can include wildcards.

You can use pathname-1 through pathname-8 to specify a maximum of eight
pathnames of library EPFs. You may specify wildcard names.
(Treewalking, however, is not supported.) You do not have to include
the suffixes .FUN or .RPn.

If you do not specify any pathnames, the command displays information
on all library EPFs listed in your entrypoint search list (ENTRY$.SR).
If a library EPF specified in your entrypoint search list cannot be
located, a warning message is displayed.

The default LIST_J_IBRARY_ENTRIES output for each EPF displays a
two-line header followed by an alphabetical listing of the entrypoints.
The first line of the header lists the EPF's status (active, not
active, or not mapped) and its pathname. The second line of the header
lists the EPF's type (process-class or program-class), the total number
of entrypoints, and the number of entrypoints currently selected for
display.

If there are two or more EPFs, they are listed alphabetically.

By default, LISTJ__BRARY_ENTRIES displays entrypoints in seven columns
per line of display. If the name of an entrypoint runs into an
adjacent column, fewer than seven names are displayed on the affected
line. For example:

OK, LISTJ-IBRARY_-NTRIES LIBRARIES*>FORTRAN_ID--LIBRARY -EN I@@

(not active) <Mia,>LIBRARIES*>FORIRAN_.IO__LIBRARY.FUN
Program-Class Library EPF, 115 Total Entrypoints, 16 Selected Entrypoints

I $ A A 0 1 I $ A A 1 2 I $ A D 0 7 I $ A M 0 5 I $ A M L 0 I $ A M L 1 I $ A M 1 3
I$AP02 I$BD07 I$BD7X I$BM05 I$BM10 IOC$RA IOCS$T
IOCS$_FREE_I_OGI<_AL_UNIT IOC^$_G_TT_JX)GICA___UNIT

OK,

9 - 1 9 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

The -ENTRYNAME Option

If you want to display information only on selected entrypoints within
an EPF library, use the -ENTRYNAME option, abbreviated -EN:

-ENTRYNAM2 (entryname-1 [entryname-2 ... entryname-8]
-EN

The -ENTRYNAME option limits the display to selected entrypoints within
a library EPF. You use the entrynames, which may include wildcards, to
specify which entrypoints you want displayed. If you do not specify
entrynames or if you do not use the -ENTRYNAME option, all of the
entrypoints within the library EPF are displayed.

The -ND__WAIT and -HELP Options

To control screen scrolling, use the -ND_WAIT option, abbreviated -_W.
To remind yourself of the syntax of the command, use the -HELP option,
abbreviated -H.

The -NO_WAIT option enables terminal screen scrolling. This option
suppresses the —More— prompt that is otherwise given at the end of
each 23 lines of display.

If you do not specify -ND_WAIT, FRIMDS prompts you before scrolling the
terminal screen. To display the next screen of output, press RETURN or
enter Y, YES, OK, or NEXT. To exit from the command, enter N, NO, Q,
or QUIT.

The -HELP option displays the syntax of LISTJ_IBRARY_ENTRIES. This
display is also printed if FRIMDS encounters an error while parsing the
command.

F i r s t E d i t i o n 9 - 2 0

EPF COMMANDS DICTIONARY

^ LIST_LIMITS

Abbreviation: LL

Purpose: You use this command to display information on various
attributes affecting your command environment. The LIST_I_EMITS command
displays the following attributes:

• The number of command levels you can use

• The number of programs you can invoke at any command level

• The number of private dynamic segments you can use

• The number of private static segments you can use

LIST_LIMITS is useful when you think you may have exceeded one of these
limits. For example, if you have used up all the command levels
allocated to you and have reached mini -command level, you can use this
command to check your limit.

Your System or Project Administrator sets all these attributes either
in your user profile or on a system-wide basis.

The following example shows how LIST_LIMITS displays this information.

CK, UST_UMITS

Maximum number of command levels: 10
Maximum number of program invocations: 10
Maximum number of private static segments: 100
Maximum number of private dynamic segments: 150

OK,

Chapter 7, which discusses some troubleshooting technigues, explains
the attributes of the command environment in more detail.

9 - 2 1 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

^ I_EST_MI_^_CCMIANDS [command-match]

Abbreviation: LMC

Purpose: Use this command to display the names of the PRIMOS commands
that you can use after you have reached mini-command level, explained
earlier in this chapter.

command-match is a character string that is used as a pattern match for
iniM-commands to be listed. The character string can contain wildcard
characters. If you do not specify command-match, LIST_MINI_OOMMANDS
displays the names of all the PRIMOS commands that you can use at
mini-command level.

For example, if you do not specify a command match: ^ >

OK, LIST_MINI_OOMMANDS

Abbrev Full name Abbrev Full name

C CLOSE COO 0QMOUTPUT
DMSTK DUMP_STACK ICE INITIALIZE COMMAND ENVIRONMENT
LE LISTJEPF LL LIST LIMITS
LMC LIST MINI_OOMMANDS LS LIST SEGMENT

LOGIN LO LOGOUT
P PM PR PRERR

RDY REN REENTER
RLS RELEASE_LEVEL REMEPF REMOVE EPF
S START

CK,

If you specify the command match LIST®®:

OK, LIST_MINI_OQMMANDS LIST,®
Abbrev Full name Abbrev Full name

LE
LMC

OK,

LIST_EPF
LIST MINI COMMANDS

LL
LS

LIST_LIMITS
LIST SEGMENT

First Edition, Update 1 9-22

EPF COMMANDS DICTIONARY

▶ IJCT_SEARCH_RULES listnamel.. .Iistnamel6
-NOLWAIT
-HELP

Abbreviation: LSR

Purpose: Use this command to display the contents of your active
search lists, and to show the pathname of the search rules file used to
create each search list.

LIST_SEARCH_RULES Options

The listname argument allows you to specify which search lists you wish
to see. If you specify one or more list names, LIST_SEARCH_RULES
displays those search lists in the order specified. You can specify a
maximum of 16 list names. If you do not specify listname,
LICT_S__^RjCH_RULES displays the five system-defined search lists
mentioned below, plus all of the search lists that you have defined.
The most recently set search list is displayed first.

The -NO_WAIT option causes terminal output to scroll continuously.

The -HELP option displays the command syntax and options. A help
screen is also displayed if PRIMOS detects an error while parsing the
command.

Default Search Lists

LSR lists the five system-defined search rule files by default. These
five search lists are:

S e a r c h L i s t P u r p o s e

ATTACKS Searches partit ions for top-level directories.

COMMANDS Searches directories for executable code files.

ENTRY$ Searches library EPF files for entrypoints.

INCLUDES Searches directories for source code files.

BINARYS Searches directories for binary object code files.

PRIMOS (ty default) establishes the above special-purpose search lists
when you either log in or otherwise initialize a process.

9 - 2 3 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

The following example illustrates the IJST_SEARjCH_RULES command:

OK, LSR

List: ATTACKS
Pathname of template: <DISK2>SEARCK_RULES*>ATTACH$.SR

-added_disks

List: INCLUDES
Pathname of template: <DISK2>SEARCH_RU1ES*>INCLUDE$.SR

[HOME_DIR]

List: BINARYS
Pathname of template: <DISK2>S__^RCH_RULES*>BINARY$.SR

[HOME_DIR]

List: COMMANDS
Pathname of template: <DISK2>SEARCHJ*UI__S*>COtfMAND$.SR

cmdncO

List: ENTRYS
Pathname Of template: <DISK2>SEARCH_RULES*>ENTRY$.SR

-primos_direct_entr ies
libraries* >system_library. run
libraries * >f ort ran_io_library. run
libraries* >application_library. run
-stat ic_mode_l ibrar ies

CK,

F i r s t E d i t i o n , U p d a t e 1 9 - 2 4

EPF COMMANDS DICTIONARY

^ LIST_SEGMENT [segno-1 [... segno-8]] [options]

Abbreviation: LS

O p t i o n s : - B R I E F - B R
- D Y N A M I C - D Y
- H E L P - H
-NAME
- N 0 J W A T T - W
- S T A T I C - S T

Purpose. The LIST_SEGMENT command displays information about the
current user's private segments that are in use. The command displays
only the private segments in the range '4000 through '5777.

Segment numbers are displayed in ascending numerical order. If you
give the command with no options, then LIST__SEGMENT displays only the
segment number and the access rights assigned to each segment.

Two possible combinations of access rights may be displayed:

Access Code Access Allowed

PX Read and execute access

FWX Read, write, and execute access

For example:

OK, LIST_SBGMENT

1 Private static segment,
segment access

4000 FWX

8 Private dynamic segments,
segment access

4152 RX
4153 RX
4154 RX
4155 RX
4156 RX
4157 RX
4376 FWX
4377 FWX

OK,

9 - 2 5 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

You use segno-1 through segno-8 to specify a maximum of eight octal
segment numbers on which you want information. You cannot induct
wildcards in the segment numbers or use iteration with them. If you do
not give any segment numbers, LIST_SEGMENT displays information for
each segment that is currently in use in the static and dynamic segment
ranges.

The following examples show two uses of LIST_SEG*£NT with specified
segment numbers.

OK, LIST.SEGMENT 4152 4153 4000

1 Private static segment,
segment access

4000 FWX

2 Private dynamic segments,
segment access

4152 RX
4153 RX

OK, LIST.SEGMENT 4157 4160 4173

2 Private dynamic segments,
segment access

4157 RX
4160 RX

Private dynamic segment 4173 is not currently in use.

OK,

LIST_SEGMENT Options

Following are the options of the LIST_SEGMENT command:

O p t i o n M e a n i n g

I -BRIEF j Displays only the total number of seg-
1 ~BR 1 ments that are currently in use in each

segment range.
/ -DYNAMIC j Displays information only about dynamic
I ~ D Y > p r i v a t e s e g m e n t s .

F i r s t E d i t i o n 9 - 2 6

EPF COMMANDS DICTIONARY

Option

(-HELP1 -H

Meaning

Displays the syntax of the LIST_SEGMENT
command. The help display is also
shown if PRIMDS encounters
while parsing the command.

i s
an

also
error

-NAME Displays the name of any EPF file that
is associated with the segment. (An
EPF may be associated with a segment if
the procedure or the linkage areas for
that EPF are assigned to that segment.)
This option is valid only for your own
private, dynamic segments.

If more than one EPF is associated with
a given segment, as may happen if the
linkage areas of several EPFs are
allocated within the same segment, then
the EPF pathnames are displayed
alphabetically by filename on separate
l ines.

If a given EPF uses more than one
segment, the EPF pathname appears
alongside the segment number/access
right-hand pair for each segment.

If a dynamic segment is not associated
with an EPF, the word "none" appears by
that segment.

-NOJWAIT Enables terminal screen scrolling. This
option suppresses the —More— prompt
that is otherwise given at the end of
each 23 lines of display.

If you do not specify -ND__WAIT, FRIMDS
prompts you before scro l l ing the
terminal screen. To display the next
screen of output, press RETURN or enter
Y, YES, OK, NEXT. To exit from the
command, enter N, ND, Q, or QUIT.

-STATIC
-ST

Displays information only about
private segments.

s ta t i c

9-27 First Edition

FROGRAM^R' S GUIDE TD BIND AND EPFS

LIST_SBGMENT Examples

The following example shows the use of the -NAME option.

OK, LIST.SEGMENT -NAJE

I Private static segment,
segment access
4000 FWX

II Private dynamic segments,
segment access epf

4152 RX <MKT>LIBRARIES*>SYSTI1M_J_IBRARY.F_JN
4153 rx <mkt>l ibrar ies*>systemj l ibrary. f1 in
4154 rx <mk2>l iz>p0wers. fun
4155 rx <mkt>l_bf-\ries*>f0fot?a1sl3d_j_ibrary.f_jn
4156 rx <mktx:mdnco>ld. fun
4157 rx <mkt>cmdnc0>copy.fun
4160 rx <mktx:mdnco>delete._un
4161 rx <mktx:mdnco>hint . fun
4375 fwx <mktx:mdnco>delete.fun
4376 fwx <3vikt>libf_\ries*>system_j_ibrary.f1jn
4377 fwx <mktx:mdncoxxdpy.fun

<MKTX̂ _DNCO>DELETE. fun
<MKT>L_BRARIES*>PORIRAN_IO_LIBRARY. FUN
<MK2>LIZ>FOWERS. RUN
<MKT>LIBRARIES*>SYSTEM_JJIBRARY. FUN—More— (CR)

OK,

<MKT>CMDNCO>HINT. FUN

The next example shows the summary display provided by the -BRIEF
option.

OK, LIST_SBGMENT -BRIEF

I Private static segment.

II Private dynamic segments.

OK,

F i r s t E d i t i o n 9 - 2 8

EPF COMMANDS DICTIONARY

▶ REMDVE_EPF [pathname] [options]

Abbreviation: REMEPF

Options: -ACTIVE -AC
-HELP -H
-NOT__ACTIVE -NA
-NOLQUERY -N3
-ND_VERIFY -NVFY
-QUERY -Q
-VERIFY -VFY

Purpose: You use this command to remove an EPF from your address
space. That is, if an EPF is mapped to your address space, REMDVE_EPF
unmaps it. REMDVELEPF does not remove suspended EPFs.

REMDVELEPF does not delete the EPF file itself. The command is useful
at the following times:

• You want to allow another user to delete an EPF that you
currently have mapped to your address space. Before the other
user can use the DELETE command, you have to remove the EPF. If
the other user tries to delete the EPF without first removing
it, the other user receives an error message.

• You want to deallocate segments associated with one or more
EPFs.

You can specify the pathname of the EPF file you want to remove. You
can use a simple filename or a full pathname. You do not have to
include the .FUN or .RPn suffixes. Because REMDVELEPF supports command
processor iteration, the pathname can include wildcards. The command
does not, however, support treewalking.

If you do not give a pathname, REMDVELEPF assumes that you want to
remove all the non-suspended EPFs in your address space. The command
asks you which EPFs you wish to remove, as shown in the following
example. To remove the EPF, answer Y or YES. To leave the EPF alone,
answer N or NO.

OK, REMDVE_EPF
Ok to remove EPF file <^KT>LIBRARIES*>FORTRAN_IO_LIBRARY.FUN? NO
Ok to remove EPF file <_^>LIBF_\RIES*>SYST^J_IBRARY.F_JN? NO
Ok to remove EPF file <MKTX:MDNCO>DELETE.FUN? NO
Ok to remove EPF file <MKT>CMDNCO>LD.FUN? NO
Ok to remove EPF file <MKTX:MDNCO>HINr.RUN? NO

No EPFs removed (REMDVELEPF).
OK,

9 - 2 9 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TD BIND AND EPFS

If the EPF file you specify either does not exist or is not mapped into
your address space, you receive the message shown in this example:

OK, REMOVE_EPF MISTAKE

No EPFs removed (REMDVELEPF).
OK,

The options for REMDVELEPF are:

Option Meaning

-ACTIVE
-AC

-NOTLACTIVE
-NA

-VERIFY
-VFY

-NO_VERIFY
-NVFY

-QUERY
-Q

-N0_QUERY
-N3

-HELP
- H

Terminates only active process-class
library EPFs that are not in use by a
suspended program or library. You
cannot use REMDVE_EPF to remove
suspended EPFs.

Terminates only non-active EPFs. These
are EPFs that are currently mapped to
the user's address space but that are
neither suspended EPFs nor in-use
process-class library EPFs.

Requests the user to verify all EPF
terminations. By default, you are
asked to verify terminations only when
you include wildcards in pathname.

Suppresses verification checking when
you include wildcards in the pathname.
You cannot use the -VERIFY and
-ND_VERIFY options together.

Requests the user to verify that an EPF
is to be removed if the EPF is
currently in use within the user's
address space. This is the default.

Suppresses user verification if the EPF
is currently in use within the user's
address space. You cannot use the
-QUERY and -ND_QUERY options together.

Displays the syntax of REMDVE_EPF. The
help display is also printed if FRIMDS
encounters an error while parsing the
command.

First Edition 9-30

EPF COMMANDS DICTIONARY

In the following example, the user lists her EPFs, removes a FORTRAN
library EPF, and finally removes all her inactive EPFs.

CK, LISTJEPF

1 Process-Class Library EPF.

(active) <MKT>LIBRARIES* >SYSTEM_LIBRARY. RUN

1 Program-Class Library EPF.

(not active) <MKT>LIBRARIES*>PORTRAN_IO_LIBRARY.RUN

5 Program EPFs.

(active) <MKT>CMDNCO>OOPY. RUN
(not active) <MKT>(>_DNCX)>DEI_ETE. RUN
(not active) <MKT>CMDNCO>LD.RUN
(active) <MK2>LIZ>POWERS. RUN
(not active) <>__T>CMDNCO>HINT.RUN

CK, REMOVE_EPF F@g>
Ok to remove EPF file <MKT>I_EBRARIES*>PCHTRAN_IO_LIBRARY.RUN? YES
OK, REMOVE_EPF -NOT_ACTIVE
Ok to remove EPF file <MKT>(3tm(X>D___ETE.RUN? YES
Ok to remove EPF file <MKT>CMDNCO>LD.RUN? YES
Ok to remove EPF file <MKT>(DMDNCO>HINT.RUN? YES
OK,

9 - 3 1 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

SET SEARCH RULES

Abbreviation: SSR

-DEFAULT [-LIST_NAME listname]
pathname [-LISTJNAME listname] [-NO_SYSTEM]
-HELP

Options: -DEFAULT -DFLT
-HELP -H
-LIST NAME -LNAM
-NO SYSTEM -NS

Purpose: Use SET_SEARCH_RULES to copy a desired set of search rules
from a search rules file into a search list.

A search rule is a location in the
to an object that

fi le sys tem. (Th is loca t ion
typically points to an object that you will likely be using; this
object can be, for example, an EPF or a top-level directory.) A search
rules file contains a sequential list of these search rules. In order
to use this sequential list, you must copy it into memory. The
sequential list in memory is called a search list. The action of

o fcopying the
search list,

list of search rules into memory is called setting the
and this is done with the SET_S__\RCK_RULES command.

The options for SET_SEARCH_RULES are:

Option Meaning

-DEFAULT
-DFLT

-LISTJNAME)
- L N A M J

-NO_SYSTEM
-NS

listname Replaces the existing search list with
a list of your own choosing. This
option sets your search rules to a
private l ist or resets your search
rules to the system defaults.

Displays the syntax of the command. The
help display is also shown if PRIMOS
encounters an error while parsing the
command.

listname Instructs PRIMOS to name the search
list with listname rather than a name
derived from pathname. The list name
may contain up to 22 characters.

Instructs PRIMOS not to preface your
search list with the system default
rules. If you do not use this option,
PRIMOS includes the system default
rules at the begijiniiig of your search
l i s t .

First Edition, Update 1 9-32

EPF COMMANDS DICTIONARY

Search Rule Keywords: Search rule keywords are special instructions
that you place in the search rules file. These instructions are
carried out when you set the search list or when you perform a search
operation on the search list. Keywords enclosed in brackets are
variables for which the appropriate literal is supplied when the search
list is used.

Keyword

-SYSTEM

-INSERT

Meaning

Allows you to change the placement
of system rules in a search list.
Specify the -SYSTEM keyword in the
desired location in the list. By
d e f a u l t , P R I M O S a u t o m a t i c a l l y
inserts the default search list at
the begirming of your file.

Specifies the pathname of another
search rules file. PRIMOS inserts
the contents of the other search
rules file at the point indicated by
-INSERT.

-OPTIONAL Instructs PRIMOS to enable an
optional search rule in the search
l i s t .

-ADDED DISKS Causes PRIMOS to search all of the
disk partitions that have been added
to your system. This keyword is
only used with the ATTACKS search
l i s t .

-STATIC MODE LIBRARIES Instructs PRIMOS to scan all the
shared static-mode libraries for the
desired entrypoint. This keyword is
used only with the ENTRY$ search
l i s t .

-PRIMOS_DIRECT ENTRIES Instructs PRIMOS to search the
PRIMOS system calls. This is only
used in the ENTRY$ search list.

[CRIGINJDIR]

r
r

Instructs PRIMOS to search your
origin directory. This is useful in
completing a pathname in a search
rule. This keyword can be used in
a l l s e a r c h r u l e fi l e s e x c e p t
ATTACKS.

9-33 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

[HOME DIR]

[REFERENCING_DIR]

Instructs PRIMOS to search your home
directory (the current attach point,
as opposed to the origin directory,
which is covered by [QRIGIN_DIR,
above). This keyword can be used in
a l l s e a r c h r u l e fi l e s e x c e p t
ATTACKS. However, be aware that the
use Of [HOME_DIR] in ENTRY$ can
cause unexpected results.

Instructs PRIMOS to search a
pathname that you supply. When the
search list is used, the pathname is
s u b s t i t u t e d f o r t h e
[REFERENCING_DIR] keyword. If the
operation that uses the search list
does not supply a pathname, PRIMOS
i g n o r e s t h e k e y w o r d .
[FWERENCINGJDIR] can be used in all
search rule files except ATTACKS.

/*comment text Causes PRIMOS to ignore comments
begirming with the characters /*.

Uses Of Search Lists

Three ways to use search lists are:

• Use the system default list: In this case, you never need
use SET_S__^RCK_RUIES or to create your own search list file.

to

• Use your own list, including the system list: In this case, use
SET_SEARCK_RULES without the -NO_SYSTEM option in order to allow
PRIMOS to insert the system list at the start of your file.

• Use your own list, overriding the system list:
use SET_SEARCK_RULES with the -NO_SYSTEM option.

In this case,

First Edition, Update 1 9-34

EPF COMMANDS DICTIONARY

The following example shows how to use SET_SEARCK_RULES to change your
search rules. In this case, SSR is used to change the command file
s e a r c h r u l e l i s t f r o m t h e s y s t e m d e f a u l t C O M M A N D S t o
MYLIST.COMMANDS.SR. For the sake of the example, only the affected
search list, COMMANDS, is displayed:

CK, LSR

List: COMMANDS
Pathname of template: <SYSQNE>SEARCHJ}uI__S*>COMMAND$

cmdncO

CK, SSR MYLIST.COMMANDS.SR -NO_SYSTEM
CK, LSR

List: COMMANDS
Pathname of template: <SYSTWO>JULIAN>MYLIST.COMMANDS.SR

j u l i a n > c o . fi l e s 1
j u l i a n > c o . fi l e s 2
cmdncO
bi l l>programs

CK,

9 - 3 5 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

USING THE COPY COMMAND WITH EPFS

Use the COPY command to replace one EPF with another. The format of
the command is:

COPY source-pathname [target-pathname] [options...]

where source-pathname identifies the object you wish to copy (source
object), and target-pathname identifies the destination and name of the
copied object (target object). (The PRIMPS Coinmands Reference Guide
describes the options to the COPY commandT)

If the target object, identified by target-pathname, is open, the COPY
command fails, unless the target is an EPF. This example shows what j-^
happens when a user tries to copy the file ELEANOR to the open file ^^
FRANKLIN:

OK, COPY ELEANOR FRANKLIN
''FF_^NKI_IN'' already exists, do you wish to overwrite it? YES
File open on delete. Unable to delete file ''FRANKLIN1' (copy)
ER!

Using COPY to Replace an Open EPF File

The COPY command does allow you to specify a target file that is open,
provided that the target is an EPF. When you give the command, COPY
performs a replacement operation, in two stages:

1. First, COPY changes the name of an open EPF file, which you
specify as the target object.

2. COPY then copies the file you specify as the source object into
a new file it creates with the original name of the open EPF
fi l e .

For this operation to work, the target object must be an EPF, and you
must include its .RUN suffix on the command line.

To replace an open EPF file, you give a command like:

COPY MYI1B>BETTER EPF.RUN LIBRARIES*>OLD_EPF.RUN

where OLD_EPF is the (possibly open) file you want to replace, and
BETTER_EPF is the file you are putting in its place.

F i r s t Ed i t i on , Upda te 1 9 -36

EPF COMMANDS DICTIONARY

In this example, assuming OLD_EPF.F_JN is in use, the operation works as
follows:

1. The name of the target EPF file is changed. The suffix .FUN is
replaced by the suffix .RPh, where n is a digit ranging from 0
through 9. In the above example, OLD_EPF.FUN might be renamed
QLD_EPF.RPO.

2. The source EPF file is then copied to target-pathname. In the
example, the source file B_rrTER_EPF.FUN is copied to
LIBRARIES*X3LD_EPF. FUN.

By default, ODPY tells you that the target EPF file is open, and asks
whether or not you want the F__PLACE operation completed. CDPY also
displays the name of the replaced file. These messages are shown in
the following example:

OK, ODPY LIZ>PCWER2.FUN LIZ>QO.FUN
EPF file "LIZ>GO.FUN" already exists, do you wish to replace it? YES
New version of EPF file LIZ>GO.FUN now in place.
Old version of active EPF file now named LIZ>GO.RP0.
OK,

To prevent the display of these messages, use the -N0_QUERY option of
the ODPY command.

Once you have replaced the EPF, anyone who invokes it gets the new
version. However, if people were using the old version at the time
that you replaced it, that version remains mapped into their address
spaces. You may want to tell them what you have done, and suggest that
they use REMDVELEPF and invoke the new version if they wish.

F_3FLACE (.RPn) Files

PRIMDS does not delete REPLACE files when they are no longer mapped
into the address space of any users. If you create REPLACE (.RPn)
files, then you are responsible for deleting them once they are no
longer needed.

Numbering: The suffix numbering sequence starts at .RPO and continues
through TrP9. Thus, there are a maximum of 10 possible REPLACE files.
If all possible files exist, FRIMDS asks you whether it can delete one
of the REPLACE files that is not currently mapped to any user's address
space, as shown in the following example.

9 - 3 7 F i r s t E d i t i o n

FROGRAMNER'S GUIDE TO BIND AND EPFS

OK, COPY PCWER2.FUN POWERS.PUN
EPF file "POWERS. FUN" already exists, do you wish to replace it? YES
ok to delete EPF file BOWERS.RPO? YES
New version of EPF file POWERS.FUN now in place.
Old version of active EPF file now named POWERS. RPO.
OK,

Use the -NO_QUERY option to suppress both the prompts shown in the
above example.

If all 10 REPLACE (.RFh) files are still mapped into the address spaces
of some users, then the COPY operation cannot be completed, as the
following example shows.

OK, ODPY LIZ>CAR.FUN JA)VES>CAR.PlfN
EPF file "CAR.FUN" already exists, do you wish to replace it? YES
EPF replace files are all in use.
Unable to replace file. "CAR. FUN" (copy)
ER!

F i r s t E d i t i o n 9 - 3 8

EPFs Galling
Programs

From within a program EPF, you may invoke another program in much the
same way that you invoke a subroutine. PRIMDS provides two interface
subroutines, CP$ and EPF$RUN, that allcw a running program to invoke
another program or a PRIMDS command.

Using CP$, your EPF can invoke internal FRIMDS commands; external
FRIMDS commands; and user-written EPFs, CPL programs, and static-mode
programs. Among user-written programs, the EPFs and CPL programs can
be invoked in one of three ways: with no information being passed to
or from the program (known as program invocation); with information
passed to the called program via a command line (known as command
invocation); or with information passed via a command line to the
called program, and information returned in the form of a text string
from the called program to the calling program (known as function
invocation).
This chapter:

• Discusses programs, commands, and functions

• Introduces CP$, EPF$RUN, and FRE$RA, the subroutines used for
calling and for cleaning up after programs

• Explains how to pass information to and from a called program

• Examines the mechanisms by which programs invoke other programs

• Describes use of the CP$ subroutine

1 0 - 1 F i r s t E d i t i o n

FROGRAMNER' S GUIDE TO BIND AND EPFS

Explains command preprocessing with CP$

Explains how to redirect terminal I/O with CP$

Examines recursive program invocation

Shows source and output for a sample program

UNDERSTANDING OOMMANDS, COMMAND FUNCTIONS, AND PROGRAMS

FRIMDS distinguishes among:

• Internal FRIMDS commands, such as ATTACH, RESUME, ASSIGN, and
UNASSIGN

• Internal CPL command functions, such as ATTRIB, WILD, and GVPATH

• External commands, such as COPY, LD, FUNOFF, and SPOOL

• Programs written by users

Internal FRIMDS Commands

PRIMDS contains many internal subroutines, some of which are accessible
at command level via command names such as ATTACH and RESUME. These
coinmands are called internal commands. They are not stored on the disk
as programs; rather, they reside within PRIMDS itself.

Internal CPL Command Functions

The Command Procedure Language (CPL) within PRIMDS contains internal
command functions. Typically, these are accessed from within CPL
programs by statements such as:

TYPE Your global variable file is [GVPATH].

Like internal FRIM3S commands, internal CPL command functions are not
stored on the disk as programs, but are part of FRIMDS itself.

F i r s t E d i t i o n 1 0 - 2

EPFS CALLING PROGRAMS

External Commands

When you issue a command that is neither an internal FRIMDS command nor
an internal CPL command function, FRIMDS looks in the directory CMDNCO
for a program with the same name as the command. Programs in CMDNCO
are called external commands. They are regular programs that have been
placed in CMDNCO by Prime or by your System Administrator.

Because external commands and programs differ only in where they are
kept, issuing the ED command is effectively the same as typing:

RESUME CMDNC0>ED

Users' Programs

Whether installed in CMDNCO as a system-wide command or placed in a
user's directory, a program is the basic unit of work under FRIMDS.
PRIMDS recognizes three types of programs:

• Executable Program Format (EPF)

• Static-mode

• Command Procedure Language (CPL)

You use the RESUME command to invoke these types of programs. To
determine what type of program you are invoking, FRIMDS checks the
program name's suffix: .FUN for an EPF, .CPL for a CPL program, .SAVE
or no suffix for a static-mode program.

Note

SEG programs, which are invoked by the SEG command and use the
.SEG suffix, are also static-mode programs.

CP$, EPF$RUN, AND FRE$RA
The two subroutines that allow one program to call another are CP$ and
EPF$PUN. Of these, CP$ is the more general. Calling CP$ invokes the
PRIMDS command processor. Therefore, you can use CP$ to invoke:

• Internal FRIMDS commands, such as ASSIGN

• External FRIMDS commands
• User-written CPL programs

1 0 - 3 F i r s t E d i t i o n

FROGRAMJER'S GUIDE TO BIND AND EPFS

• User-written EPFs

• User-written static-mode programs

When used to invoke EPFs, CP$ allows you to use such command
preprocessing features as wildcarding and name generation.

EPF$RUN, on the other hand, can be used only to invoke EPFs. It does
not allow preprocessing. Therefore, you would use EPF$RUN only when
you do not want any changes to be made to the command line being passed
to the called program.

Information on how to use the CP$ interface is provided later in this
chapter and in the Advanced Programmer's Guide, Volume III: Command
Environment. Information on how to use the EPF$RUN interface is
provided in the Advanced Programmer's Guide, Volume III.

FRE$RA is needed only when you have invoked a program as a function.
Such programs allocate memory in which to store a text string that they
return to the calling programs. After using the text string, the
calling program must call FRE$RA in order to return the storage area to
the pool of available memory. For information on FRE$RA, see the
Advanced Programmer's Guide, Volume III.

PASSING INFORMATION TO AND FROM PROGRAMS

Three optional parameters, managed by PRIMDS, can be used to
communicate with programs:

• A command line

• A severity code

• A returned text string

Command Lines

Any EPF, CPL program, or static-mode program can be written so that it
accepts a command line. (In fact, any of these types of programs can
be written so that they require command lines; accept them as optional
but do not require them; ignore command lines; or reject any attempt
to use command lines.)

The command line allows a user to pass any desired operating parameters
to the program. For example, a user might invoke a program named
MYPROG with the following command:

RESUME MYIROG PAYRCLI__DATABASE -DELETE_EMPLOYEE 176652

F i r s t E d i t i o n 1 0 - 4

EPFS CALLING PROGRAMS

In this example, the command line passed to the program MYPROG is:

PAYRCLÎ IATABASE -DELETELEMFLOYEE 176652

The MYFROG program can then choose to parse the passed command line and
use it to determine what actions are to be taken.

EPFs: To make an EPF accept a command line, you must have its main
entrypoint accept at least two arguments in its calling sequence. The
first argument contains the command line as a CHARACTER VARYING string
when the EPF is invoked by FRIMDS. The second argument is the severity
code.

CPL Programs: To make a CPL program accept a command line, include an
&ARGS directive in the program.

Static-mode Programs: To make a static-mode program accept a command
line, have it call RDTK$$ to extract the command line from the static
command-line buffer before calling GOMANL to get a new line of input.

Severity Codes

You may choose to have your program return a severity code indicating
the degree to which the program successfully completed its task. The
severity code is an integer (16-bit halfword) that is returned ty the
program to PRIMDS upon completion. FRIMDS then passes the code to the
invoker of the program either as an indication on a display (when the
invoker is a user) or as a returned value (when the invoker is a
program).

Signaling Severity Codes: Successful completion is signaled by
returning a severity code of 0 or by choosing not to use the severity
code feature at all. A user invoking a program that completes
successfully receives the OK, prompt.

Unsuccessful completion is signaled by returning a severity code that
is greater than 0. A user invoking a program that completes
unsuccessfully receives the ER! prompt.

Successful completion with a warning indicator is signaled by returning
a severity code that is less than 0. Warnings are usually signaled by
a program when it completes in an orderly fashion, but when it has not

1 0 - 5 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TD BIND AND EPFS

done everything the user expected it to do. A user invoking a program
that completes successfully and indicates a warning condition receives
the OK, prompt.

Note

The OK, and ER! prompts are the default brief prompts set up
upon user login. Users may change these prompts and their
corresponding long prompts at will, by using the RDY command,
explained in the Prime User's Guide and in the PRIMDS Commands
Reference Guide. Among other advantages, customizing prompts
in this manner allows users to distinguish between wholly
successful completions and successful completions with warning
ind ica to rs .

Choosing Values for Severity Codes: Although FRIMDS specifies the
sign of the severity code (zero, positive, or negative), the programmer
decides on the actual values the program will return to indicate an
error or warning condition. Typically, the standard PRIMDS error
codes, documented in the Subroutines Reference Guide, are used as
positive or negative values. However, all severity codes that can be
returned by a program should be listed and explained in the
documentation for that program.

Returning Severity Codes: To have an EPF return a severity code, have
its main entrypoint accept at least two arguments in its calling
sequence. The second argument is the severity code, which the EPF sets
to some value before returning from the main entrypoint to PRIMDS.

To have a CPL program return a severity code, have it issue a &RETURN
directive specifying an integer value for the severity code. For
example:

&RETURN %SEVERITY <DDE%

To have a static-mode program return a severity code, first have it
call the SETRC$ subroutine and then have it call the EXIT subroutine.
The SETRC$ subroutine is described in the Subroutines Reference Guide.

F i r s t E d i t i o n 1 0 - 6

EPFS CALLING FROGRAMS

Returned Text Strings

Programs designed as functions return text strings as the result of
their invocation. For example, a program named USEFLID might return
the username of the invoking user; it could be used as a function in a
CPL program as follows:

TYPE Your username is [RESUME FROGRAMS>USEI_J_D]

Programs designed as functions must be EPFs or CPL programs;
static-mode programs cannot return text strings.

EPFs: To have an EPF return a text string, have its main entrypoint
accept eight arguments. These arguments, and their functions, are
explained in the Advanced Programmer's Guide, Volume III: Command
Environment.

Using these arguments, the EPF can allocate temporary memory storage
for the text string to be returned, copy the text string into that
storage, store the pointer to the allocated storage as an argument to
be returned to its caller, and return from its main entrypoint to
FRIMDS.

After the calling program makes use of the returned string, it must
return the allocated storage that contained the returned text string to
the pool of available memory. To return this storage, it must use the
FRE$RA subroutine, as explained later in this chapter.

CPL Programs: To have a CPL program return a text string, have it
issue a &RESULT directive before it issues the &RETURN directive. For
example:

&RESULT [CALC %HDRNSI / 2] /* Return number of steers.
&RETURN

UNLERSTANDING PROGRAM INVOCATION

As the preceding discussion of argument passing suggests, invoking a
command or program from within another program is similar to calling a
subroutine. Passing parameters to a program is done by passing textual
information on a command line. If the called program is to return a
value to the calling program, the called program is designed as a
function and returns the value as a textual function value.

1 0 - 7 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

Figure 10-1 illustrates the effect of one program named TRANSACT
calling another program named DEPOSIT__AMDUOT. The example uses the CP$
interface. It shows the layer of FRIMDS that is invoked when CP$ is
called by TRANSACT and that ultimately calls DEPOSIT__AMDUNT. Later,
when the DEPOSIT__AMDUNT program finishes, it returns to PRIMDS. FRIMDS
then performs some cleanup activities, and then returns from CP$ to the
TRANSACT program, resuming its execution.

F i r s t E d i t i o n 1 0 - 8

EPFS CALLING FROGRAMS

Command
Line

Severity \ Returned
C o d e I Te x t

String

TRANSACT

Invocation of One Program by Another Using CP$
Figure 10-1

10-9 First Edition

PROGRAMMER* S GUIDE TO BIND AND EPFS

Use of Shared Memory

A major difference between programs invoking programs and programs
invoking subroutines lies in the use of shared memory. Calling
programs and their target subroutines often expect to share information
through a COMMON or STATIC EXTERNAL area in memory. This type of
sharing cannot be done when one program invokes another, because FRIMDS
keeps individual program invocations entirely separate.

Note

If it is absolutely necessary to employ a common area of memory
for use by multiple program invocations, you must use the
SYMBCL subcommand of BIND to specify where a COMMON or STATIC
EXTERNAL area is to be placed in memory. The same SYMBCL
command must be used in linking each program that shares the
area. This functionality is rarely needed.

Limits on Program Invocation

There are resource limits on the invocation of programs from within
programs. Limits exist on:

• The maximum number of programs at a given command level (program
breadth)

• The maximum number of dynamic segments

• Memory utilization

The System Administrator at each site sets these limits, which are
discussed in Chapter 7 of this book.

The Command Interface

Because PRIMDS includes the command processor, the interface between
the command processor and commands (programs) is defined by PRIPOS.
This interface is described in detail in the Advanced Programmer' s
Guide, Volume III: Command Environment. In summary, the interface has
three levels of complexity:

1. I>rogram invocation. The program being invoked takes no
arguments and returns no value; hence, it is a program, rather
than a command function, and it ignores any command line passed
to it. No severity code is returned; therefore, a severity
code of 0 (successful completion) is assumed.

F i r s t E d i t i o n 1 0 - 1 0

EPFS CALLIN3 FROGRAMS

2. Command invocation. The program being invoked accepts a
command line as an argument, and returns only a severity code;
hence, it is a command program, rather than a command function.

3. Function invocation. The program being invoked accepts:

• A command line

• A description of the command state (including the
command name, information on whether wildcards,
treewalking, and other command preprocessing features
have been selected, and so on)

• An indication of whether the program being invoked is
expected to return a value, used when the program can
run as a command program or a command function

As with command invocation, a program that is a command
function returns a severity code.

When the program is invoked as a command function, it also
returns the result of the function as a textual value. It does
this by allocating a structure into which it places the
returned value and returning a pointer to that structure.

Program Invocation: The main entrypoint of a program must take no
arguments. In FORTRAN, the main entrypoint of a program named MYPROG
begins as follows:

SUBROUTINE MYFROG

In PL1/G, the same entrypoint would begin with:

myprog: proc;

Command Invocation: The main entrypoint of a command takes two
arguments. In FORTRAN, the main entrypoint of a command named MYPROG
begins as follows:

SUBROUTINE MYFROG(CMDLIN,CODE)
INTEGER*2 CMDLIN(513) ,QDDE

1 0 - 1 1 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

A FL1/G command named YOURFROG begins as follows:

yourprog: proc (commancLline, code) ;

del commancLline char(1024) var,
code fixed bin(15);

In each case, the command line is passed as a varying character string.
The program parses the command line, using a subroutine such as CMDL$A
or CL$PIX.

Before executing a RETURN statement, the program should set CODE to the
final severity code for the command execution. A value of 0 indicates
successful completion; a value of > 0 indicates an unsuccessful
completion; and a value of < 0 indicates a successful completion with
a warning condition.

Function Invocation: The main entrypoint of a function takes five
arguments. This chapter discusses how to invoke a function and accept
the returned value. For information on how to write a command
function, see the Advanced Programmer's Guide, Volume III: Command
Environment.

USING THE CP$ SUBROUTINE

There are three uses for CP$:

• Invoking internal FRIMDS commands

• Invoking commands or programs

• Invoking functions

Each use is described below.

Using CP$ to Invoke an Internal FRIMDS Command

To use the CP$ subroutine to invoke an internal PRIMOS command, use the
following calling sequence:

del cp$ entry(char(1024) var,fixed bin(15),fixed bin(15));

call cp$ (commandLline, code, commancLstatus);

F i r s t E d i t i o n 1 0 - 1 2

_ _ , E P F S C A L L I N G F R O G R A M Sc
f^ When you call CP$, the command processor attempts to execute theinternal command passed in commancLline. If it fails to begin

execution, a standard PRIMDS error code is returned in code. If it
succeeds in executing the command, 0 is returned in code, and the
status of the command itself is returned in commancLstatus.

Possible values for commancLstatus vary, but they are almost always
interpreted as follows:

V a l u e M e a n i n g

0 Program completed successfully.

< 0 Successful completion, defined operation not
^ _ p e r f o r m e d (w a r n i n g) .

> 0 Program did not complete successfully (error).

Note

The returned value of command_status is undefined if
the returned value of code is non-zero.

w The Form of the Command Line: In commandLline, pass the command line
that you would type as a user invoking the command. The PRIMDS
Commands Reference Guide contains information on command formats. For
example, to assign a magnetic tape drive for use by a running program,
you might have the program call CP$ with the following command line:

ASSIGN MTO -WAIT

f The RESUME command is a special case, because it runs an external
program. Use of the RESUI^E command to invoke a program via CP$ is
discussed in the next section.

Using CP$ to Invoke a Command or a Program

To use the CP$ subroutine to invoke a command or a program, use the
following calling sequence. (This sequence is the same one used for
invoking internal commands.)

del cp$ entry(char(1024) var,fixed bin(15),fixed bin(15));

call cp$ (commandLline, code, commanaLstatus);

1 0 - 1 3 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

When you call CP$, the command processor attempts to execute the
command line passed in commandLline. If it fails to begin execution, a
standard PRIMDS error code is returned in code. If it succeeds in
executing the command, 0 is returned in code, and the status of the
command itself is returned in commancLstatus.

Note
The returned value of command_status is undefined if the
returned value of code is non-zero.

The Form of the Command Line: When calling user-written programs
(other than those that have been placed in CMDNCO), the text string
passed in commandLline begins with:

RESUME program-pathname

The RESUME command is an internal FRIMDS command, and program-pathname
is the pathname of the program you wish to invoke. If there are any
command line parameters, they must follow program-pathname in
c o m m a n d L l i n e . —
When invoking external PRIMDS commands (that is, programs that are
stored in CMDNCO), commandLline begins with:

command-name

This string invokes the external command named command-name.

Using CP$ to Invoke a Function
The CP$ subroutine can invoke either an internal FRIMDS command
function or a user-written function.

F i r s t E d i t i o n 1 0 - 1 4

EPFS CALLING FROGRAMS

To use the CP$ subroutine to invoke a function, use the following
calling sequence:

del cp$ entry (char(1024) var,fixed bin(15),fixed bin(15),
lr 2 bit(l),

2 b i t (l) ,
2 bit(14),

p t r , p t r) ;

/* Preset values returned by invoked command to null values,
in case command does not set them or does not in fact get
invoked, so that we use legitimate default values. */

rtn_f unction_ptr=null();
ccmman6Lstatu£?=0;

cal 1 cp$ (commandLline, code, commancLstatus, commandLf lags,
null() ,rtn_function__3tr) ;

When you call CP$, the command processor attempts to execute the
command line passed in command_line. If it fails to begin execution, a
standard PRIMDS error code is returned in code. If it succeeds in
executing the command, 0 is returned in code and the status of the
command itself is returned in commancLstatus.

The commandLflags structure (shown below) specifies that the caller
expects a string to be returned. nullQ is the null pointer; it
generates a pointer of 7777/0.
A pointer to the returned text string structure is returned in
rtn_functioa_ptr if the invoked program has successfully set its return
value. If rtn_function_J?tr is still nullQ when CP$ returns, no text
string has been returned.

Note

The returned values of commancLstatus and rtr_.function_ptr are
undefined if the returned value of code is non-zero.

Setting the Command Flags: Declare and pass the following PLl/G
structure in commandLflags:

del 1 commandLflags static,
2 commandLfunction_call bit(1) init('1'b),
2 no_eval_vbl__f cn_ref s bit (1) init (' 0' b),
2 mbz bit(14) init('00000000000000'b);

1 0 - 1 5 F i r s t E d i t i o n

FROGRAMMER' S GUIDE TO BIND AND EPFS

Setting the commandLfunction_cal 1 bit to 'l'b announces that the caller
expects a text string to be returned by the called function. Setting
the no_eval_vbl_fcn_ref s bit to 'O'b allows the command processor to
evaluate variable and function references in the command line. The mbz
bits must always be set to zero.

The Form of the Command Line: Use the command function name (for a
FRIMDS command function) or the RESUME command followed by the name of
the function (for a user-written function), just as you would when
invoking a command. Do not enclose the command line in square brackets
(I 1).
For example, to identify the user's global variables file, call CP$
with the command line:

GVPATH

The call itself is:

call CP$('GVPATH' ,code,command_status,commandLflags,
nul 1 (), rtn_f unctiorLptr) ;

This call returns either the pathname of the global variables file or
the keyword -OFF in a structure pointed to by rtn_function_ptr. This
structure is described in the next section.

To invoke a user-written function, call CP$ with a command line such as
the following:

RESUME FR0GF&MS>GET_J__O0RD 1154 -DATABASE PAYROLL

The calling sequence for this call is:

call CP$('RESUME PROGRAMSX3ET_REO0RD 1154 -DATABASE PAYROLL' ,
code,commandLstatus, commandLflags,null(),
rtn_function_ptr);

Again, information is returned by the function in a structure pointed
to by rtn_function_ptr.

The Returned Text String: The returned text string is the returned
value of the function.

F i r s t E d i t i o n 1 0 - 1 6

EPFS CALLING FROGRAMS

The declaration of the returned text string structure is:

del 1 rtn_function_structure based(rtn_functior__ptr),
2 version fixed bin(15),
2 text__string char(32767) var;

Notes

If the invoked function did not return a value, then
rtn_function_ptr is not modified. Therefore, set it to
the null pointer before calling CP$, and check it after
CP$ returns to be sure that a result has been returned.

If version does not contain 0, do not attempt to use
text_string, because a non-zero version indicates a new
version of the returned structure. However, version
should contain 0, and text_string should contain tEe
returned text string.

Freeing Storage: After using the returned text string, your program
should free the returned text string structure to the pool of available
memory. Use FRE$RA to do this, as follows:

del fre$ra entry(ptr);

call fre$ra(rtn_function_ptr);

Note

Do not call FRE$RA with a null pointer.

Command Preprocessing

When invoking its target program, the CP$ subroutine performs any
appropriate command preprocessing. Command preprocessing can include:

1. Multiple command processing (such as ATTACH MYDIR; LD)

2. Variable and function evaluation (such as %MYVAR% and [GVPATH])

3. Iteration (such as DELETE MYFROG. (FTN BIN LIST FUN))

4. Treewalking (such as SIZE *>_ _>MYPROG. PL1G)

5. Wildcarding and name generation (such as CMPF *X)LD>@@
*>NEW>=)

1 0 - 1 7 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

These features are summarized in the Prime User's Guide and described
in detail in the PRIMDS Commands Reference Guide.

Note

Placing a tilde (~) in front of the command line as passed to
CP$ has the effect of preventing all forms of command
preprocessing. Therefore, calling CP$ with the command line

'SETLVAR .POO %.OETION% is an option, [SETJL] is a function.

causes the global variable .POO to be set to exactly the string
shown. Without the tilde (~), the variable %.OPTION% and
command function reference [SETJL] would be evaluated, and the
results substituted in the command line.

Preprocessing for Commands: The command separator character, which isthe semicolon (;), indicates that multiple commands are present. The
command processor separates each command, expands variable and function
references (unless inhibited), and then determines further
preprocessing by analyzing each resulting command.
CP$ determines the appropriate remaining command preprocessing features
by checking the command type (internal CPL program, EPF, or static-mode
program).
If the command being invoked is an internal command, the remaining
preprocessing depends on the command itself, based on a table inside
PRIMDS. Otherwise, the command invokes a program.
If the program being invoked is a CPL program, CP$ performs only the
iteration function. Treewalking, wildcards, and name generation names
are passed to the CPL program untouched.

If the program being invoked is an EPF, CP$ uses the information
provided in the EPF by BIND during program linking to determine which
command preprocessing functions are to be performed. (Chapter 8
contains information on the BIND subcommands that govern command
preprocessing for an EPF.)
If the program being invoked is a static-mode program, CP$ uses the
name of the program to determine which command preprocessing functions
are to be performed. If the name begins with NX$, then no additional
command preprocessing functions are performed. If the name begins with
NW$, then iteration is performed, but not treewalking, wildcarding, or
name generation. If the name does not begin with NX$ or NW$, then all
command preprocessing functions are performed.

F i r s t E d i t i o n 1 0 - 1 8

EPFS CALLING FROGRAMS

Preprocessing for Functions: No command preprocessing is performed
when CP$ invokes a function, except for variable and function
evaluation (unless inhibited). Because a function must return a single
value, features such as multiple commands or iteration are not
appropriate when invoking a function.

Terminal Input and Output

When you invoke a command or a program from within another program, all
output from the called program is sent, by default, to the user
terminal. Similarly, responses to prompts or queries issued by the
command are sought, by default, from the user terminal.

If you do not want to require terminal interaction, you can redirect
the called program's output into a command output file. You can also
have the called program seek its input from a command input file.

You can use either the GOMD$$ subroutine or the internal FRIMDS command
COMDUTPUT to redirect terminal output to a command output file. For
example, to direct output from the LD command to a command output file
named LD.CDMD, you might use the following pair of calls:

call CP$('COMDUTPUT LD.CDMD',code,commandLstatus)
/* Open the comoutput f ile */

call CP$('LD MYDIR -DETAIL -ND_WAIT' ,code,command_status)
/* Collect the information. The -N0_WAIT option

suppresses LD's -—More— prompt */
call CP$ ('GOMDUTFUT -END',code,commandLstatus)

/* Close the comoutput file */

To have the called program receive input from a command input file, use
either O0MI$$ or the internal PR^S command COMINPUT.

Error Codes From CP$

An output argument, code, informs the calling program of the success or
failure of the operation. This argument is an INTEGER*2 or FIXED
BIN(15) variable. Symbols are provided to allow PLl/G, FORTRAN,
Pascal, and PMA programs to substitute mnemonic keywords for numeric
values.
If code is 0, the operation was entirely successful. Otherwise, code
has~one of many values. Typical values and their meanings follow. Not
all possible error codes are listed; for example, FRII^ENET-related
error codes such as E$RLDN (The remote line is down) may be returned by
CP$, but are not listed.

1 0 - 1 9 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

Note

When you use CP$ to invoke an EPF, either via the RESUME
command or by specifying an EPF in CMDNCO, an error code
returned by the EPF$RUN subroutine is returned by CP$.
Therefore, consult the list of error codes returned by EPF$RUN,
given in the Advanced Programmer's Guide, Volume III: Command
Environment, for information on additional error codes
returnable by CP$.

Keyword

<ok>

E$EOF

Value

0

1

E$FIUS

E$NRIT 10

E$DIRE 14

E$FNTF 15

E$BNAM

E$ITRE

17

57

Meaning

The operation was successful.

End o f fi le . Typ ica l ly, th is e r ror
indicates an attempt to invoke a text file
(such as a CPL file) as a static-mode
p r o g r a m . A l t e r n a t i v e l y, t h i s e r r o r
indicates a file that has been truncated by
FIX_DISK during system maintenance
procedures. In the latter case, you must
replace the program with a backup copy.

File in use. Indicates an attempt to run a
program that is open for writing.

Insufficient access rights,
have access to the program.

You do not

Operation illegal on directory. Typically,
this error indicates an attempt to invoke a
segment directory, such as a .SEG file,
with the RESUME command. Alternatively,
this error indicates an attempt to invoke a
file directory.

Not found. If the command is the RESUME
command, the target program could not be
found. Otherwise, the command is not an
internal command, and a program with the
same name could not be found in CMDNCO.

Illegal name. The RESUME command specifies
a filename not conforming to filename
syntax rules.

Illegal treename. The RESUME command
specifies a pathname not conforming to
pathname syntax rules.

First Edition 10-20

EPFS CALLING FROGRAMS

Keyword

E$CMND

Value

68

E$BARG

E$NI_AM

71

109

E$BVER 158

E$NINF 159

Meaning

Bad command format. The command name, the
first token on the command line, is more
than 32 characters long or does not conform
to filename syntax rules.

Invalid argument to command. The RESUME
command is not followed by a program name.

Not a DAM file. The target program is a
.FUN file, indicating an EPF, but is not a
DAM file. The fault is in the installation
of the program being invoked.

Incorrect version number. Typically, this
error means that the command function
invoked by the call to CP$ returned a
structure containing an invalid version
number. Alternatively, this error means
that the target EPF contains an invalid
version number. In both cases, the fault
is in the command function, not the calling
program. The command function is an EPF,
because a CPL program should never cause
this error. If the command function is in
fact a CPL program, contact your Customer
Support Center.

No information. Either you do not have
access to the program or the program does
not exist.

IF A FROGRAM INVOKES ITSELF

A program may invoke itself recursively, either directly, by calling
itself using CP$ or EPF$RUN, or indirectly, by calling another program
or collection of programs that ultimately call the original program.

A program invoking itself recursively via CP$ or EPF$RUN, whether
directly or indirectly, does not necessarily produce the same results
as if it calls itself by invoking its own main entrypoint. The first
process uses recursive program invocation, and the second uses
recursive procedure invocation. Either of these processes causes
dynamic storage to be allocated and initialized for each invocation.
However, only program invocation causes FRIMDS to allocate and
initialize static storage. Each time the program is invoked, static
storage is allocated for all procedures in that program. Once the
program is running, no additional static storage is allocated by
PRIMDS.

10-21 First Edition

PROGRAMMER'S GUIDE TO BIND AND EPFS

To see how this might affect a program's output, consider the following
PL1/G program:

divine: proc (commancLline, code) ;
del commandLline char(1024) var,

code fixed bin(15);

del number fixed bin(15),
sum fixed bin(15) static initial(0);

number=bin(commandLline); /* Get the number. */if number=10 then return; /* At 10, we stop. */

sum=sum+number; /* Add number into sum. */

put list('Invocation number ' 11trim (char(number),'11fb)||
', sum is now '|I trim (char(sum),'11'b));

put skip;
call divine (trim(char(number+l),'11'b),code); /* Call myself. */

put list('Finishing invocation #'I|trim(char(number),'11'b) I |
', sum is now '11 trim(char(sum),'ll'b));

put skip;

code=0; /* Always successful. */
return; /* Finished. */

end;

F i r s t E d i t i o n 1 0 - 2 2

EPFS CALLING PROGRAMS

When the above program is compiled, linked, and executed,
the following output:

it produces

Invocation number 0, sum
Invocation number 1, sum
Invocation number 2, sum
Invocation number 3, sum
Invocation number 4, sum
Invocation number 5, sum
Invocation number 6, sum
Invocation number 7, sum
Invocation number 8, sum
Invocation number 9, sum
Finishing invocation #9,
Finishing invocation #8,
Finishing invocation #7,
Finishing invocation #6,
Finishing invocation #5,
Finishing invocation #4,
Finishing invocation #3,
Finishing invocation #2,
Finishing invocation #1,
Finishing invocation #0,
OK,

is now
is now
is new
is new
is new
is new
is new
is new
is new
is new
sum is
sum is
sum is
sum is
sum is
sum is
sum is
sum is
sum is
sum is

10
15
21
28
36
45
new 45
now 45
now 45
now 45
new 45
new 45
new 45
new 45
new 45
new 45

In this example, procedure DIVINE invokes itself ten times within a
single program invocation. The static storage is initialized only
once, when the RESUME DIVINE command is issued. This storage is then
reused by each invocation of the procedure DIVINE. Each invocation of
the procedure changes the contents of the static storage used by &JM.
The change is visible across all procedure invocations.

Now, the program is modified to call itself by using CP$ instead of
invoking its main entrypoint. The program now reads:

by

divine: proc(commandLline,code);

del commancLline char(1024) var,
code fixed bin(15);

del number fixed bin(15),
sum fixed bin(15) static initial(0),
status fixed bin(15);

del cp$ entry(char(1024) var,fixed bin(15),fixed bin(15));

number=bin(commandLline); /* Get the number. */
if number=10 then return; /* At 10, we stop. */

sum=sum+number; /* Add number into sum. */

10-23 First Edition

FROGRAM ÊR, S GUIDE TO BIND AND EPFS

put list('Invocation number *||trim(char(number),'11'b)||
', sum is now 'I|trim(char(sum),*ll'b));

put skip;

call cp$(»RESUME DIVINE ' | |trim(char(number+l),'ll'b),status,
code); /* Call myself. */

put list('Finishing invocation #»|Itrim(char(number),'ll'b) I|
', sum is now '[|trim(char(sum),'ll'b));

put skip;

if status*=0 then code=status; /* Invocation error. */
else code=0; /* Always successful if invoked. */

return; /* Finished. */

end;

When the above program is invoked, the output is

Invocation number 0,
Invocation number 1,
Invocation number 2,
Invocation number 3,
Invocation number 4,
Invocation number 5,
Invocation number 6,
Invocation number 7,
Invocation number 8,
Invocation number 9,
Finishing invocation
Finishing invocation
Finishing invocation
Finishing invocation
Finishing invocation
Finishing invocation
Finishing invocation
Finishing invocation
Finishing invocation
Finishing invocation
OK,

sum is now 0
sum is now 1
sum is now 2
sum is now 3
sum is now 4
sum is now 5
sum is now 6
sum is now 7
sum is now 8
sum is now 9
#9, sum is now
#8, sum is now
#7, sum is now
#6, sum is now
#5, sum is now
#4, sum is now
#3, sum is now
#2, sum is now
#1, sum is now
#0, sum is now

In this example, it is the program named DIVINE that invokes itself ten
times. Each time the RESUME DIVINE command is issued, once by the user
and ten times by succeeding invocations of the program, FRIMDS
allocates and initializes static storage for the program. This static
storage includes the variable SUM. Therefore, each invocation of
DIVINE starts off with SUM set to 0. Each invocation of DIVINE sets
SUM to its invocation number. In doing so, however, it modifies only
its own copy of SUM. As seen by the final messages, copies of SUM for
other invocations are not changed.

First Edition 10-24

EPFS CALLING PROGRAMS

The point to remember, therefore, is that FRIMDS allocates and
initializes one copy of static storage per program invocation. Static
storage includes OOMMDN and STATIC EXTERNAL areas, except for those
explicitly named with the SYMBOL subcommand of BIND. Because PRIMDS
separates program invocations so that they do not destroy one another's
data, one program can be invoked and then suspended; then the original
invocation can be continued by issuing the START command. The second
invocation of the program does not affect the first invocation of the
program; therefore, the results of the first invocation are
essentially unchanged.

Of course, if a program makes use of data that is not in static
storage, such as OOMMDN or STATIC EXTERNAL storage specified using the
SYMBOL command, then separate invocations of the program are not
necessarily independent of each other. Other data not^ in static
storage includes system objects such as attach points, files, file
units, and so on. FRIMDS does not provide a fully recursive command
environment; it provides only a separation of per-program data between
program invocations.

SAMPLE FROGRAM

This sample program, named DISPLAY_RESULT, accepts a command line
containing name and arguments for a command function. It then invokes
the function and displays whatever text string the function returns.
You might use this program to test a command function you were
developing.

If no text string is returned to DISPLAY_RESULT, either because^ no
command was invoked or because the command invoked was not a function,
DISFLAY_RESULT returns the message, "No result returned."

Source code for DISPLAY_RESULT is:

display_result: proc (commandLline, code) ;

del commancLline char(1024) var,
code fixed bin(15);

%include 'SYSCOM>ERRD. INS.PL!';
% include 'SYSO0M>KEYS.INS.PLl' ;

del commandLstatus fixed bin(15),
1 commandLflags static,

2 commandLfunction_call bit(l) init('l'b),
2 no_eval_vbl_fcn_refs bit(l) init('O'b),
2 mbz bit(14) init('00000000000000'b),

rtn_function_ptr ptr;

del 1 rtn_function_structure based (rtr__function_ptr),
2 version fixed bin(15),

1 0 - 2 5 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

2 text_string char(32767) var;

del cp$ entry(char(1024) var,fixed bin(15),fixed bin(15),
1, 2 bit(l),

2 bit(l),
2 bit(14),

p t r, p t r) ,
errpr$ entry (fixed bin (15), fixed bin (15), char (80),

fixed bin(15),char(80),fixed bin(15)),
fre$ra entry(ptr);

/* Preset commandLstatus and rtr__function_ptr to null values, in
case they are not set by the invoked program. */

rtr__function_ptr=null();
commandLstatus=0;

/* Now call CP$ with the exact command line passed. */

call cp$ (commandLline, code, commandLstatus, commandLf lags,
nul l () ,r tn_funct ion_ptr) ;if code^O

then do;
call errpr$(k$irtn,code,'Cannot invoke program1,21,

'DISPLAY_RESULT' ,14);
return;
end; /* if code"=0 */

code=command_status; /* Pass command status on. */

if rtn_function_ptr=null()
then do;

put list('No result returned.1);
put skip;
end; /* if rtn_function_ptr=null() */

else do; /* if rtr_Junction__ptr's=null() */

if rtn_functiorLptr->versionFO
then do;

put list (rtn_function_ptr->text_string) ;
put skip;
end; /* if version=0 */

else do; /* if version"=0 */

put list('Bad version, is '||trim(char(
rtn_function_ptr->version),*11'b)11
', should be 0.');

put skip;

code=e$bver;

end; /* if version~=0 */

F i r s t E d i t i o n 1 0 - 2 6

EPFS CALLING PROGRAMS

call fre$ra(rtr__function__ptr); /* Free text. */

end; /* if rtn_function_ptr^=null() */

end; /* display_result: proc */

A sample session involving this program, and a discussion of that
session, follow.

OK, PL1G DISPLAY__RESULT
[PL1G Rev. 19.4]
0000 ERRORS [PL1G Rev. 19.4]
OK, BIND
[BIND rev 19.4]

LOAD DISPLAY_RESULT
LIBRARY PL1GLB
LIBRARY

BIND COMPLETE
: FILE
O K , R E S U M E D I S P L A Y _ _ R E S U L T V i
No result returned.
OK, RESUME DISPLAY_RESULT EAIE
84-11-13
OK, RESUME DISPLAY__RESULT RDY
OK 11:41:00 8.330 16.724
No result returned.
OK, RESUME DISPLAY_RESULT ATTRIB DISPLAY_RESULT. PL1G -LENGTH
9 1 2 _ _ _ - —
OK, RESUME DISPLAY_J_3SULT TYPE FOO
FOO
No result returned.
OK, RESUME DISPLAY_RESULT CDMPARELFILE
ER! RESUME DISPLAY_RESULT QDMPARE_FILE LOGIN.CPL LOGIN.CPL
T R U E * I]
OK, RESUME DISPLAY_RESULT CDMPARELFILE LOGIN.CPL MEMD_TD_CHARITY
F A L S E — — _ _ _ _ _ _
OK, ASSIGN MT(0 1 2)
Too many objects specified. 1 (asnmt$)
USAGE: ASSIGN MTn [-ALIAS MTm] [<options>]

ASSIGN MTX -ALIAS M[Tn [<options>]
options: [-WAIT]

-MOUNT]
-RETENSION]
- T P I D < i d >] \ U
-7TRK I -9TRK]
-SPEED {25 I 100}]
-RINGON 1 -RINGOFF]
-DENSITY {800 | 1600 | 3200 I 6250}]

ER! RESUME DISPLAY_RESULT ASSIGN MT(0 1 2)
Device MTO assigned.
No result returned.

1 0 - 2 7 F i r s t E d i t i o n

Mil

PROGRAMMER'S GUIDE TO BIND AND EPFS

Device MT1 assigned.
No result returned.
Device MT2 assigned.
No result returned.
OK, UNASSIGN MT(0 1 2)
Too many objects specified. 1 (usnmt$)
Usage: UNASSIGN MTn [-UNLOAD]

UNASSIGN -ALIAS MTn [-UNLOAD]
ER! RESUME DISF_iAY__RESULT UNASSIGN MT(0 1 2)
Device released.
No result returned.
Device released.
No result returned.
Device released.
No result returned.
OK,

For purposes of analysis, this session may be divided into three parts:

Part I: The user invokes DISELAY__RESULT with no argument, and gets the
appropriate message in return. The user then invokes DISPLAY_RESULT to
invoke internal commands (RDY and TYPE) and two internal command
functions (ATTRIB and DATE). Note that the commands RDY and TYPE
display their own results at the user's terminal, but do not return
text strings to DISPLAY__RESULT. Thus, invoking these internal oomnands
causes the message printed by those commands to be displayed first,
followed by the message "No result returned" from DISFLAY__RESULT.

Part II: The user invokes a program named COMEARELFILE, which resides
in CMDNCO. This program is not a Prime program, but is an example of
how a program may be installed by the System Administrator as a new
command and subsequently used by all users. OOMPARE_FILE is a command
function that compares two files for equality. If the files are
identical, CDMPARE_FILE returns the text string "TRUE". If the files
are not identical, it returns "FALSE". If it encounters an error, it
returns a positive error code. Under no circumstances does it display
any messages to the terminal. DISPLAY_RESULT assumes that the command
it invokes will display an error message before returning a positive
severity code. Therefore, when DISPLAY_RESULT is used to invoke
OOMPARELFILE, and CDMPARELFILE encounters an error, no message is
displayed except for the ER! prompt. (An error is shown in the case
when two pathnames are not supplied to CDMPARELFILE.)

Part III: This part of the session demonstrates the subtle differences
in command preprocessing between invoking internal FRIMDS commands and
invoking external programs. As the session shows, the ASSIGN and
UNASSIGN commands do not accept iteration. However, the DISFLAYJRESULT
program does accept iteration. Therefore, using DISPLAY_RESULT with
iteration to invoke ASSIGN and UNASSIGN causes DISPLAY_RESULT itself to
be invoked several times, each time invoking ASSIGN or UNASSIGN with a
single device name.

F i r s t E d i t i o n 1 0 - 2 8

APPENDIXES

r

BIND Error Messages

This appendix lists (In alphabetical order) the error messages that you I
m a y r e c e i v e w h e n u s i n g B I N D . I

• Attempt to initialize dynamic common

This is an internal error, usually involving a CC or VRPG program.
Ensure that your program compiles correctly and retry the BIND session.
If the error persists, contact your Customer Support Center.

• :attempt to reference undefined common

A common area is referenced in a module, but the area has not been
defined or loaded. This error may also result from an internal error
in a user-written compiler.

• Bad address format. Correct syntax is <octal>/<octal>.

An incorrect absolute address format is given. Usually the slash
separator has been omitted.

• :bad command

You issued an invalid or a misspelled subcommand. The subcommand is
ignored.

A - 1 F i r s t E d i t i o n , U p d a t e 1

P R O G R A M M E R ' S G U I D E T O B I N D A N D E P F S ^

• B a d E P F . I t w i l l n o t b e s a v e d . - ^

You attempted to save an EPF that contains nothing.

• Bad group type

The object file does not meet BIND's expectations. This message
usually results from an internal error in a user-written compiler.
Make sure that all of your program modules compile with no errors. If
the message persists, call your Customer Support Center.

• Bad object file

You tried to link a file that has faulty code. Either the file is not <-^
a n o b j e c t fi l e o r i t h a s b e e n c o m p i l e d i n c o r r e c t l y . ^ ^

• Bad size on allocate

The size argument supplied by the user for the ALLOCATE command is
missing, or is not a number, or is a negative number.

• : b a d s y m b o l n a m e ^ ^

The symbol name supplied by the user for the ALLOCATE command begins
with a number or hyphen, which constitute illegal symbol names.

• Base area zero full

All locations in the sector zero area have been used. The last linked
binary file has done too many indirect references and needs to be
broken down into smaller modules.

• BIND can't link this binary file

A special object group was generated ty a compiler which specified
which linkers could be used to link the binary file. In this case, the
BIND bit was not set.

• BIND internal error. Linkage table corrupted.

BIND's internal linkage descriptors have been corrupted. If the
message persists, call your Customer Support Center.

F i r s t E d i t i o n , U p d a t e 1 A - 2

BIND ERROR MESSAGES

• Block size mismatch

This is an internal error message. This may point to an incorrect
binary file format. Be sure that all of your programs compile with no
errors. If the message persists, call your Customer Support Center.

• Can't load EPF

You tried to link an EPF runfile after you linked one or more modules,
In a BIND session, the EPF runfile must be the first module linked.

• Can't load in 32r mode

You tried to link an object module compiled or assembled in 32R mode.
Recompile with the -64V option or reassemble in V mode or I mode.

• Can't load in sectored mode

You attempted to link an object module compiled or assembled in S mode,
an archaic mode provided only for compatibility with Honeywell 316 and
516 computers. Recompile with the -64V option or reassemble in V mode
or I mode.

• :common redefined as ECB entry.

The symbol was first defined as a common definition and then defined as
an ECB entry.

• Debug group encountered before a procedure definition group

A compiler emitted DBG information before the procedure section of the
program. Be sure that all of your modules compile with no errors. If
the message persists, call your Customer Support Center.

• :dupl icate opt ion

The desired option to a subcommand was given more than once on the same
command line.

• :ECB entry redefined as common.

The symbol was first defined as an ECB entry and then defined as a
common definition.

A - 3 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

:ecb not found

An attempt is made to define as an ECB a module that has not been
linked prior to using the MAIN subcommand.

• ** Empty file **

You tried to link an empty object file.

• External memory reference to illegal segment

A compiler tried to place a COMMON block in an inappropriate segment.
This is an internal error. Be sure that all modules compile with no
errors. If the message persists, call your Customer Support Center.

• :extra map destination. First one used.

You specified too many map destinations. The first map destination
given is used.

• :extra map option. First one used.

You specified too many map options. The first map option given is
used.

• Illegal addressing mode

A direct reference has been made to common axeas located in another
segment. Try to recompile.

• Illegal block type

This is a compiler-generated message. Be sure that all modules compile
with no errors. If the message persists, call your Customer Support
Center.

• :illegal indirect or index on an address constant

This is usually generated by the compiler or the assembly code. This
indicates that there is an incorrect instruction format or that the
index is out of range. Be sure that all modules compile with no
errors. If the message persists, call your Customer Support Center.

F i r s t E d i t i o n , U p d a t e 1 A - 4

BIND ERROR MESSAGES

• :illegal redefinition of common

A common area has been defined by a module to be a certain size and
subsequently redefined to be larger. This can happen when a module is
placed in memory via the RESOLVE_DEFERRED_OCMCIN or ALLOCATE
subcommand, or when data is allocated from the program (for example,
the INIT statement in PL/1). This message is a warning message if the
commmon area has not been allocated. Otherwise, this message is an
error message; the attempt to redefine the common area to be larger is
ignored, and the module that made the attempt is not linked.

• Is not a dam or cam file

You tried to file an EPF into a file that is not a DAM or CAM file.

• Is not an ecb

You defined as the MAIN entrypoint a symbol that is not the ECB for a
subroutine.

• '.Larger redefinition of common.

You redefined a deferred COMMON block to be larger than a previous
definition. The size becomes what is specified in the new definition.
To inhibit this message, use the NO_CXDMM0N__WARNING subcommand.

• Missing parameter

The parameter following a subcommand is missing, misspelled, or
inco r rec t .

• Missing prooedure end group

This is a compiler-generated message. Be sure that all modules compile
with no errors. If the message persists, call your Customer Support
Center.

• :mu l t i p l e i nd i r ec t

This message may be caused by a program compiled in 32R mode,
Recompile with the -64V option or reassemble in V mode or I mode.

• Must enter li__mode command before entryname command

An attempt was made to create a table of entrypoints without first
designating a library class.

A - 5 F i r s t E d i t i o n , U p d a t e 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

• No library mode given

You tried to create a library without designating the library class.

• Not enough storage.

There are no more dynamic segments. Try to clean up your environment
(for example, with the REMOVE_EPF and RELEASE_LEVEL commands).

• Old object file

The object file was compiled or assembled in an old version of the
compiler or assembler. Recompile or reassemble and restart the BIND
session.

• Procedure size too large

Most often this is a compile time error message. This is an added
check in the linker that indicates that the code for one procedure and
its base areas cannot fit into one segment. Be aware that PMA will not
trap this condition at assembly time.

• Runfile too old. Can't reload.

An attempt was made to read a pre-Rev. 19.4 EPF.

• :smaller redefinition of common

You redefined a COMMON block from a larger size to a smaller size. The
larger size is used. To iirhiblt this warning message, issue the
NO_OOMMON_WARNING subcommand.

• :symbol already exists

You tried to define a new symbol, but the symbol is already in the
symbol table. You must give the symbol a new name.

• :symbol not found

You tried to use a symbol with a name that has not been defined.

• This binary requires a newer version of BIND

A special object group was generated by a compiler which specified that
a certain version of a linker was required to link the binary file.

F i r s t E d i t i o n , U p d a t e 1 A - 6

N̂

_ — . B I N D E R R O R M E S S A G E SC
f^ • :undefined segment

An attempt was made to access a segment that is not available. This
message can come from the compiler or from BIND. It can also mean that
you attempted to initialize a static segment greater than one segment.
If the message persists, call your Customer Support Center.

• '.undefined symbol

An attempt was made to equate two symbols, but the first symbol is not
in the symbol table.

• :unrecognized keyword

You used a subcommand with a keyword that is not recognized by BIND.

• :unrecognized option

You used a subcommand with an option that is not recognized by BIND.

• Unsupported segment type

This is a BIND internal error. Recompile with no errors and rebind.
If the message persists, call your Customer Support Center.

• Warning: BIND not complete

There still exist unresolved references (that is, calls to subroutines
that are not in the runfile). Make sure that all user subroutines and
Prime special libraries have been loaded. Also, make sure that any
calling program is linked before the subroutines it calls.

• Warning: External reference to DYNT.

A reference was made to an external object, but that object had already
been defined as a dynamic entry.

• Warning: Initialization of static common ignored.

An attempt was made to initialize static common (common placed via the
SYMBOL subcommand).

r
r

A-7 First Edi t ion, Update 1

EPF Error Messages

This appendix lists the EPF-specific error messages that you may
encounter while running an EPF.

User-rectifiable Error

• You have exceeded your maximum number of command levels.

This message means that you have reached mini-command level, described
in Chapter 7.

Messages for Your System Administrator

All the remaining error messages include the words "Please contact your
system administrator." If you encounter any of these errors, record
the message and report it to your System Administrator, who should
contact your Customer Support Center.

• An error was encountered while attempting to de-allocate EPF
procedure segments for EPF-name. Please contact your system
administrator.

You may run into this problem as follows: when you use RELEASE,
REMDVELEPF, or INITIALIZE_CDMM_WD_J_wmCNME^IT; or, when the program
you are running requires FRIMDS to deallocate a procedure segment.

B r - 1 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

• Internal EPF error: the EPF level cache has become circularized.
Please contact your system administrator.

The EPF level cache contains a linked list of objects. A list is said
to be circularized when the end of the list points back to the
beginning.

• Internal EPF error: the list of active EPFs for this process has
become circularized. Please contact your system administrator.

PRIMDS maintains a list of active EPFs for each running process; this
list has been corrupted.

• Internal EPF error: the ENTRY$ search list for this process has
become circularized. Please contact your system administrator.

This error can occur only when you are running a program that uses your
search list. (Search lists are discussed in Chapter 9.)

• Internal EPF error: the segment mapping table for EPF file EPF-name
could not be retrieved. Please contact your system administrator.

This message indicates a problem with storage allocation. One possible
cause is that a user might have inadvertently written data into a part
of memory used by FRIMDS.

• Internal dynamic storage error: the EPF dynamic storage class has
been corrupted. Please contact your system administrator.

The storage class used by FRIMDS to track EPF's use of dynamic segments
is not working properly. (A storage class is a heap, that is, a unit
of storage managed as a pile so that information can be taken from any
part of it.)

• Internal dynamic storage error: the USER dynamic storage class has
been corrupted. Please contact your system administrator.

The storage class, or heap, used by PRIMDS to track an individual's use
of dynamic segments is not working properly.

• Internal EPF error: the depth of the program session for this user
is invalid. Please contact your system administrator.

The command environment breadth is an invalid number (less than 0).
This is an internal error, although it may be the result of an errant
program writing on memory used ty FRIMDS. If the error persists,
contact your Customer Support Center.

F i r s t E d i t i o n B - 2

EPF ERROR MESSAGES

• Internal EPF error: the command environment level structure is
invalid. Please contact your system administrator.

This is an internal error, although it may be the result of an errant
program writing on memory used by PRIMDS. If the error persists,
contact your Customer Support Center.

• Internal EPF error: the EPF segment mapping table for EPF-name has
become invalid. Please contact your system administrator.

The table that FRIMDS uses to track the mapping of segments for this
program is not working properly.

B - 3 F i r s t E d i t i o n

Glossary

abbreviation
(1) A system-defined short name that can be substituted for a
PRIMDS internal command. For example, LE is an abbreviation for
the LIST_EPF command. (2) A user-defined short name that can be
substituted for one or more PRIMDS commands. A user-defined
abbreviation is created with the PRIMDS command ABBREV.

absolute address
An address in virtual memory that, once assigned, cannot be
relocated or dynamically assigned. To prevent ambiguity, it may
also be called an actual address (as the term "absolute address"
may also apply to the physical memory address following virtual
memory translation). Use the SYMBCL subcommand of BIND to set an
absolute address.

absolute segment number
A segment number that is assigned by BIND to the same virtual
segment number. It cannot be relocated or dynamically assigned.
It may also be called an actual segment number.

access rights
The ways in which a user may access a file, directory, or segment.
Access rights to segments are discussed in Chapter 9. Access
Control Lists (ACLs) control access to file system objects and are
discussed in the Prime User's Guide.

actual address
See absolute address.

C - l F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

actual segment number
See absolute segment number.

address space
Memory space, usually the memory allocated to one user.

a l l oca te
To reserve an amount of memory for use by a program or process.

allocated storage
Memory space that has been reserved.

assigned to
An EPF is assigned to a segment if PRIMDS gives it addresses within
that segment at runtime.

binary file
A file in machine language produced from source code by a compiler,
interpreter, or assembler. Binary files must be linked into
runfiles by BIND, SEG, or LOAD. Also called an "object module,"
"object file," or ".BIN file."

BIND
Prime's linker for producing Executable Program Formats (EPFs).

called program
A program that is invoked by another program and that acts as a
subroutine.

calling program
A program that invokes another program or subroutine.

calling sequence
The sequence of arguments to be passed from a calling program to a
called subroutine.

command environment
Information that pertains to the processing of commands and the
execution of programs for a particular user. Also, rules that
govern how many command levels a user may have. Limits on the
command environment are usually created by the System Administrator
of a site.

command environment breadth
The maximum number of simultaneous program invocations allowed per
command level.

command environment depth
The maximum number of command levels allowed.

command function
A PRIMDS command that returns a text string, such as a CPL command
funct ion.

F i r s t E d i t i o n C - 2

GLOSSARY

command level
The area of memory addressed by a particular EPF. Because EPFs are
assigned only to free areas of memory, several command levels may
exist at once. Therefore, several programs may exist in one user's
memory space at once. Each time a user suspends a program, the
user process enters a new command level.

command level depth
The number of command levels or suspended programs that are
allowed.

command line
A FRIMDS command with all its options, arguments, and command
preprocessing features.

command line linking or loading
Use of BIND with all necessary options on one command line.

command preprocessing features
See wildcard, treewalking, iteration, and name generation position.

command processor
A routine that processes arguments on a command line for a program.
The command processor is CP$, discussed in Chapter 10, in the
Subroutines Reference Guide, and in the Advanced Programmer's
Guide, Volume III; Command Environment.

command stack
The record of active invocations of commands and programs, showing
their order and what invocation was last active.

command state
Attributes of a command such as name, version, whether command
preprocessing features are recognized, and so on. A complete
listing of the command state structure is found in the Advanced
Programmer's Guide, Volume III; Command Environment.

command-match
A character string that is used as a pattern match for
mini-commands to be listed with the LIST_MINI__CDMMANDS command.
The command-match string limits the response to commands matching
the string (or part of the string, if wildcards are used).

common area or OOMMDN block
A block of data that may be linked separately from a program.
CDMMDN blocks are defined by the OOMM pseudo-op in PMA, the CDMMDN
statement in FORTRAN, the $E+ switch in Pascal, the EXTERNAL phrase
in OOBOL 74, the EXTERNAL attribute in VL/I-G, and the "extern"
storage class in C.

FAM file
A direct access file, faster for random access than SAM files.

C - 3 F i r s t E d i t i o n

PROGRAMMER1 S GUIDE TO BIND AND EPFS

default entrypoint search list
The entrypoint search list supplied by PRIMDS, named
SYSTEM>ENTRY$.SR.

deferred common
A COMMON block that may be initialized later, and for which space
is preallocated in a runfile. By default, OOMMDN blocks are
deferred by BIND unless they are initialized.

ETAR
A Descriptor Table Address Register that designates whether its
associated segments are unique (private) or shared (public). DTAR
0 and DTAR 1 reference shared segments (FRIMDS code and shared
libraries and programs). ETAR 2 and ETAR 3 reference private
segments (user space and impure user data and stacks).

dynamic entrypoint
A subroutine available for use by programs that do not themselves
contain that subroutine. The name of a dynamic entrypoint is kept
in a list of dynamic entrypoints. A program that wishes to call a
subroutine that it does not itself contain invokes the PRIMDS
dynamic linking mechanism, which searches the list of dynamic
entrypoints to find the desired subroutine. The result of this
search is the address of the desired subroutine in memory.

dynamic link
An address reference that is resolved at program runtime, whereas
traditional subroutine calls are resolved at program link time. A
dynamic link is stored as as faulted pointer to an entrypoint name.

dynamic linking
The passing of an address at program runtime rather than at program
link time. Dynamic linking is the mechanism by which a runfile
calls FRIMDS subroutines or entrypoints. Eynamic linking makes
runfiles smaller and saves memory because shared routines can be
accessed by many users. In addition, if a shared routine is
altered, dynamic linking assures that the runfiles that use it need
not be recompiled and relinked to use the new version of the shared
rout ine.

dynamic runfile
See EPFs.

dynamic segment
A segment to be used for EPFs. Assignments of program data to
dynamic segments are not known until runtime. Such segments must
all exist simultaneously in the user's address space. See also
static segment.

dynamic storage
Storage that is allocated as needed and released when not needed
during program execution.

F i r s t E d i t i o n C - 4

GLOSSARY

DYNT
(1) A pointer with the fault bit set, indicating reference to a
dynamic entrypoint (same as a faulted pointer). (2) A subcommand
of BIND that specifies a dynamic entrypoint.

entryname
The name of an entrypoint or label that may be invoked as a
routine. This term may also be used to denote the final component
of a pathname; it is rarely used that way in this guide.

entrypoint
A label in a program, a library, or PRIMDS itself. The entrypoint
may be called by another program. Typically, an entrypoint
identifies a traditional subroutine. It acts like a subroutine or
called program, but is often part of a larger module, and is
shared. Entrypoints may be created with ECB and SUBR in PMA;
FUNCTION, PROGRAM, SUBROUTINE, or ENTRY in FORTRAN; PROGRAM-ID in
COBOL; PROCEDURE or EMRY in PL/l-G; FROGRAM, PROCEEURE, or
ETJNCTION in Pascal; and MAIN in C. Entrypoints may also be
created in a library EPF with the ENTRYNAME subcommand of BIND.

entrypoint search list
A list of libraries to be searched for names called by programs. A
user mic£it create a search list to designate that the user's
private library is to be searched before, after, or instead of,
PRIMDS libraries for like-named routines. To create a search list,
use SET_SEARCFLFULES as discussed in Chapter 6. See examples in
Chapter 9.

entrypoints table
A table containing the names of all labels within a library EPF
that can be called as independent routines. Use the ENTRYNAME
subcommand of BIND to add labels to this table.

EPF
Executable Program Format. Also called a dynamic runfile. An EPF
contains a description of a complete program or library and is
assigned addresses at program runtime rather than at program link
time. Thus, an EPF may execute in more than one address in memory,
and two or more EPFs may exist in memory at once. EPFs are
produced by BIND and are executed by the RESU^E command.

EPF cache
A special list of recently used program EPFs, which are stored in
memory in the hope that they will be called next. Retrieval of
program EPFs from this area is faster than finding them again on
d isk .

EPF library
See library EPF.

C - 5 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

error code
A standard code returned by PRIMDS to a program or subroutine to
document success or failure of a program execution or the status of
the system. Standard error codes are listed in the Subroutines
Reference Guide. See also severity code.

expand an abbreviation
To determine the full command signaled by an abbreviation. See
definition 2 of abbreviation.

external commands
ODmmands that are stored as runfiles in CMDNCO, and that may
overlay other programs when invoked. These may be standard PRIMDS
commands, or may be added by users.

faulted pointer
A pointer with the fault bit set on. Having the bit set on
indicates that the address of the related symbol is not in the
runfile. This condition may be a result of user error, or it may
indicate that the symbol is a dynamic entrypoint and will be found
at runtime.

fi le su ffixes
Tags added to a filename, preceded by a period. Many suffixes
cause BIND, PRIMDS, or another utility to process the file in a
particular way. The most common suffixes are .BIN, .LIST, .RUN,
.CPL, and the language suffixes.

file system object
A file, directory, segment directory, or access category.

file type
For an EPF, a file may be a program EPF, a program-class library
EPF, or a process-class library EPF. For other file types, see the
Subroutines Reference Guide.

file unit
A number assigned as a pseudonym to each open file ty PRIMDS.

free segment pool
The total of segments allocated to a system. Each user must get
his or her allocation of segments from this pool.

fullword
On the Prime 50 series, 32 bits.

funct ion
A program that returns a text string as its value, to be
substituted in place of the function invocation.

halfword
On the Prime 50 series, 16 bits.

F i r s t E d i t i o n C - 6

GLOSSARY

I mode
An addressing mode with the same range as V mode (see below), but
with more efficient use of decimal instructions. It is available
for FL/I-G, Fortran 77, and Pascal.

image
The copy of a program or data before it is executed.

imaginary address
An address that BIND places in an EPF to identify a location that
points to another location in the EPF. At program or library
runtime, PRIMDS translates these imaginary addresses into actual
memory addresses. An EPF can therefore execute in one segment at
one time and in a different segment at another time.

imaginary segnent number
See relative segment number.

inactive EPF
An EPF that is mapped to the user's address space, but that is not
running or suspended. Such an EPF is frequently on the EPF cache.

interface subroutine
A subroutine that calls program 2 from within program 1. The
subroutine that interfaces to the FRIMDS command environment for
EPFs is CP$.

i n t e r n a l F R I M D S c o m m a n d .
A command that is part of FRIMDS code (an entrypoint into PRIMDS).
Internal commands are dynamic, which means that they do not
overwrite programs in memory. A partial list of internal commands
is in Chapter 10 of this guide. A complete list is in the PRIMPS
Commancls Reference Guide.

invocat ion
See program invocation.

iteration
The processing of a command line in such a way that lists ^ in
parentheses are processed one by one. Thus CBL (A B C) compiles
files A.CBL, B.CBL, and C.GBL with the CBL compiler.

key
In subroutine calls, a symbolic name substituted for a code number.
File keys have the format K$xxxx. Error codes have the format
E$xxxx. Keys are listed in the Subroutines Reference Guide.

l ibrary
A series of routines in one binary file. Standard PRIM)S libraries
are stored in the UFD named LIB. The user may create libraries
also.

C - 7 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

library EPF
A series of routines in one binary file, either part of PRIMDS or
created by the user with the LIBMDDE subcommand of BIND. The
creation process is discussed in Chapter 6. Unlike a program EPF,
a library EPF cannot be RESUMEd. A library EPF is linked to by
inclusion in a search list. See also program-class library and
process-class library.

link frames
See linkage.

linkage
Data structures, data values, and pointers to external subroutines
and common areas (the modifiable part of a program).

l inker
A utility that resolves external references within a runfile, so
that different pieces of code (such as a calling program and a
subroutine) can find each other at runtime. Prime's linkers, BIND,
SEG, and I/DAD, are all linkers, in that they all resolve external
references as they are given binary files. BIND, however, leaves
all loading to be done dynamically at runtime by PRIMDS.

main entrypoint
The first entrypoint in a file, or the one defined as the main
entrypoint with the MAIN subcommand of BIND.

map
(Noun) A listing of addresses of important features of a runfile,
such as unresolved references, procedure, or OOMMDN blocks.

(Verb) To allocate to an address space. From the time an EPF is
run or another program is linked to it, an EPF is considered to be
mapped until it is removed.

memory manager
The part of PRIMDS that allocates and releases memory and keeps
track of which parts of memory are free.

mini-command level
A command environment where only a limited set of commands,
discussed in Chapter 7, are recognized. A user attains
mini-command level by using up all available command levels.

mini commands
The commands available when a user has used up all available
command levels. The mini commands are discussed in Chapter 7.

mode
The mode of an EPF may be active, not active, or not mapped.
Active files may be suspended or in use. These terms are discussed
in Chapter 9, under the LIST_EPF command.

F i r s t E d i t i o n C - 8

GLOSSARY

j^ mu l t i p le p rog ram invoca t ionsMore than one EPF residing in memory at once.

name generation position
A number indicating the position in the command line of an argument
to be used for name generation. Name generation is the duplication
of target names from all or part of source names. The equals sign
(=) in the target name triggers this process. Thus,
COPY YOURS>@@ MINE>= copies all files in YOURS to
identically-named files in MINE.

nonsuspended EPF
An EPF that is mapped to a user's address space but is not active
or suspended.

^ - n o n s h a r e d l i b r a r yW S e e u n s h a r e d l i b r a r y .

notify
Send a signal to; activate.

null pointer
A pointer with no address in it (segment 7777, offset 0).

object file
^ _ S e e b i n a r y fi l e .

pageA division of a segment, containing IK halfwords, or 2048 bytes.

paging disk or paging partition
An intermediate disk area to which information from memory is
transferred to make room for other information in memory.

paging space
^^ Space on a paging disk.

pathname
The name of a file, which may include the MFD or disk name, a
directory name, and one or more sub-directory names, as well as the
filename, each separated by the symbol >.

per-program data
Data that is changed by a program, so that a fresh copy of the data
must be set up for each invocation of the program.

personal or per-user library
See private library.

personal search list
A search list created by the user with SET_SEARCFLFULES, as opposed

^^ t o t he sys tem de fau l t sea rch l i s t .

C - 9 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

PRIMDS
Prime's operating system for the 50 series.

private address space
The per-user memory allocated to a user.

private library
A user library that may be shared or unshared.

private segment
A per-user segment.

procedure
A program, subprogram, or routine, or the part of a program that
contains instructions.

procedure segment
A segment that contains only the instructions (unmodifiable part)
of a program.

process-class library
A set of routines that does not act as a physical part of the
runfile (as does a program-class library). Only one copy of the
linkage area exists for each user process. See Chapter 6.

program
An executable file. A program may be an EPF, a static-mode
runfile, or a CPL file.

program breadth
The number of programs active at a given command level.

program EPF
An executable program created with BIND.

program invocation
Calling one program from another program or from FRIMDS level.

program name
The internal name of the main entrypoint. Entrypoints may be
created with ECB and SUBR in FMA; PROGRAM, SUBROUTINE, or ENTRY in
FORTRAN; PROGRAM-ID in COBOL; PROCEDURE or ENTRY in PL/I-G;
PROGRAM, PROCEEURE, or FUNCTION in Pascal; and MAIN in C.
Entrypoints may also be created in a library EPF with the ENTRYNAME
subcommand of BIND.

program termination
Use RETURN, PRTN, or STOP to terminate a program EPF properly. The
FRIMDS handling of termination is discussed in Chapter 4.

F i r s t E d i t i o n C - 1 0

GLOSSARY

program-class library
A set of routines in an EPF, each of which acts as if it were
physically part of a the program that invokes it. A new copy of
the linkage (data storage) area is created each time one cf these
routines is invoked by a different program. The advantages of a
program-class library are discussed in Chapter 6.

p r o m p t .
A display signaling that the computer is ready for more user input.
OK, or ER! are the default FRIMDS prompts. The BIND prompt is the
colon (:).

public address space
The shared memory that any user may access.

p u r e c o d e , , . ,
A piece of code that is not modifiable within the program in which
it occurs. Such a program or subroutine may call itself or call a
program that calls the original caller. This is called
"recursion." If program code is pure, several users may share it.
The results generated by such a program are not disturbed by the
effects of previous computations. The most common way to assure
pure code is to separate procedure and data into different segments
and declare the procedure to be unmodifiable, while data segments
use a separate stack for each subroutine call. Then with each call
the calling module gets a new copy of the data variables.

All binary code produced by the CC, CBL, OOBCL, F77, PASCAL, PL1G,
and VPRG compilers is pure. The FTN compiler produces pure code if
it is used with the -64V option. The FMA assembler produces pure
code if it is used in V mode or I mode, and if programming
guidelines outlined in the Advanced Programmer's Guide, Volume III:
Command Environment, are followed.

R mode
An addressing mode in which only physical memory is available to
the user. Only PMA and FORTRAN can produce R-mode code, and only
LOAD produces R-mode runfiles.

TTOp

Recovery Based File. A file used only by Prime's EBMS subsystem.

r e a d - o n l y V M F A , . , . . _ • - 4 - v ^
Access to disk that allows only reading, not modification, of the
information on disk. See Virtual Memory File Access.

recursive
A recursive program can call itself.

reentrant
See pure code.

C - l l F i r s t E d i t i o n

PROGRAMMER' S GUIDE TD BIND AND EPFS

reinitialize environment
Reinitializing the environment returns the user's environment to
the state it was in immediately after the user first logged in.
See Chapter 9 for the INITIALIZE_CDMMAND_ENVIRCNMENT command.

relative segment number
A segment number that is reassigned by BIND. All segments
available to users are taken by BIND as relative numbers unless the
SYMBOL subcommand is used. Also called an imaginary segment
number.

remote EPF
One not residing on the CPU of the user who invokes it.

remove an EPF
To disconnect an EPF from a user's address space (not to delete the
EPF). To do this properly, use REMDVELEPF.

replace
The function of the COPY command that replaces an open EPF with a
newer version of the same name, creating a newly suffixed copy of
the previous version.

Reset Force Load (RFL)
A BIND subcommand to specify that only entrypoints currently called
in a runfile need be linked from a library into that runfile. The
advantage is a smaller runfile. See Set Force Load.

resource limits
The limits imposed on creation of EPFs. The number of EPFS that a
user may invoke is limited by the number of command levels allowed,
the maximum number of program invocations allowed, and the amount
of memory (private and dynamic segments) allocated.

returned text string
A text string returned by a function as an argument.

r u n fi l e
An executable object file. The runfiles produced by BIND are
called Executable Program Formats (EPFs).

SAM file
A Sequential-Access-Method file, slower to access randomly than a
DAM file, but needing slightly less storage space and somewhat
faster to access sequentially.

search list
A list shewing where a set of items is to be found. See entrypoint
search list.

search rules
See search list.

F i r s t E d i t i o n C - 1 2

GLOSSARY

segment
A block of address space consisting of 131,072 bytes (64K
halfwords).

segment pool
The number of free segments available to all users of a system.
Because this number is less than the maximum number of users times
the individual segment maximum, a user wishing to acquire another
segment may have to wait until other users return segments to the
segment pool.

segment range
A group of segments assigned to one purpose.

segment/offset
An address consisting of a segment number followed by an offset
number. Offsets are numbered by 16-bit halfwords.

Set Force Load (SFL)
To specify that all entrypoints in a library must be linked,
whether or not they are currently called in the runfile. The
advantage is provision for future modules linked in the runfile,
which may reference modules already encountered.

s e v e r i t y c o d e . . .
A code returned by a command or function. A value of 0 indicates
successful execution. A value greater than zero indicates no
successful execution. A value less than zero indicates successful
execution, but warns that the results may be surprising. See also
error code.

s h a r e d l i b r a r y .
One for which the same copy is used by all users, instead ot a
separate copy being called up for each user. Shared libraries save
memory space. They are separate files from the user programs that
call them.

slave process
A special phantom running under user control on a remote system.

s n a p p i n g a l i n k . , _ „ _ .
Resolution of a dynamic link at runtime; a faulted pointer (DYNT)
is changed to the segment/offset address of the target entry point.

source file
A file that contains programming statements in the format
recognized by the PMA assembler or by one of Prime's high-level
language compilers.

souroe object
For COPY, the file system object to be copied.

C - 1 3 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

stack history
A record of calls to various programs and subroutines that are
still active, showing where execution was interrupted.

standard library
The system library PFTNLB that is linked by BIND's LIBRARY
subcommand when it is used with no arguments.

standard PRIMDS error code
See error code.

static command line buffer
A buffer (storage space) in a program that accepts command line
arguments, but is addressed by RDTK$$ because the program is not an
EPF.

static runfile
A runfile that is assigned addresses at program link time rather
than at program runtime. All static runfiles tend to use the same
addresses so that one overwrites another. SEG and LOAD produce
static runfiles. See also EPFs.

static segment
A segment to be used for non-EPF programs, the address of which is
assigned when the program is loaded. See also dynamic segment.

static storage
Segments reserved for storage of non-dynamic programs. Within a
program, storage that is allocated once and for all at the
beginning of program execution.

static-mode library
One that is reinitialized each time it is invoked by a different
program.

static-mode program
A program that is not an EPF. See static runfile.

storage
Memory area allocated (reserved).

subprogram
A called program or subroutine.

subsystem
A utility such as DBMS, COBOL, or BIND.

suffix numbering
The way that COPY keeps track of EPF files that it is replacing.
Suffix numbering is discussed in Chapter 9.

F i r s t E d i t i o n C - 1 4

GLOSSARY

s u s p e n d e d E P F . ,
An EPF that was running and was stopped by a terminal quit (such as
CONTROL-P) or by an error condition. A suspended EPF is still
considered active and may be continued with START.

s y m b o l n a m e • _ . • - .
The name of a data item, program, CDMMDN block, or entrypoint in a
binary file or a runfile. Symbol names must be given addresses,
either at program link time or at runtime, before a program can
run.

s y s t e m d e f a u l t s e a r c h l i s t .
The list of pathnames that PRIMDS uses to look for library routines
referenced by a user, unless the user supplies a personal search
list. The system default list can be changed by the System
Administrator.

s y s t e m l i b r a r y T m - . ™ „ -
A library furnished with PRIMDS, such as VSRTLI or VPORMS.

s y s t e m w i d e s e g m e n t l i m i t . - ^ - - ^ , - , 4 -
The total number of segments available to all users in the segment
pool.

t a r g e t o b j e c t . ,
For COPY, the file system object copy to be created or replaced.

target program
For CP$, the program being invoked.

The ~ sign. Tildes are used to continue lines in a CPL program and
to prevent command processor features from being applied to a
command line.

t o k e n „ . „ , _ , _ , _ ,
An argument in a command line, such as a filename, a number, or an
opt ion .

t r e e w a l k i n g . . , . . . o
The processing of a command line that contains a pathname with a
wildcard (using @ or + characters) in it, such that more than one
subdirectory is searched. Thus, the command DELETE F__RE>__XJUNK
will be expanded to delete files named JUNK in all subdirectories
of HERE.

type
See file type.

unresolved reference
A call to another program or COMMON block that does not exist in
the runfile. The unresolved or missing reference may be an
omission by the user or may be a subroutine that is a dynamic
entrypoint and which will be resolved by PRIMDS at runtime.

C - 1 5 F i r s t E d i t i o n

PROGRAMMER'S GUIDE TO BIND AND EPFS

unshared library
A library for which each user gets a complete copy in his or her
own address space. An unshared library is part of the user's
runfile.

user version
The version number of an EPF, specified with BIND's VERSION
subcommand by the user who created the EPF.

V mode
An addressing mode for virtual (segmented) memory that uses 32-bit
registers, allowing 512 megabytes of memory to be addressed. V
mode allows use of virtual segments, thus extending available
memory beyond the amount of physical memory available. V mode is
the recommended mode for most Prime users.

varying character string
A string of variable size and memory allocation. See the
Subroutines Reference Guide for how to define a varying character
string in each Prime language.

virtual circuit
An open network connection.

virtual memory
Memory as seen by the user, which is larger than physical memory.
FRIMDS moves (pages) segments of code into and out of physical
memory automatically, so that the user can address a larger space
than physical memory. This larger space is virtual memory.

Virtual Memory File Access (VMFA)
Direct access to a disk rather than access to an intermediate
paging disk. VMFA can be faster than paging. FRIMDS uses VMFA
only for EPF procedure code.

VMFA
See Virtual Memory File Access.

VMFA-read
A read operation directly from disk, bypassing the paging
mechanism.

warning severity code
A number that indicates a program has encountered undefined
conditions. See severity code. For PRIMDS subroutines, warnings
are a subset of error codes. See error code.

wildcard character
The at sign (@), plus sign (+), and caret O. These characters
are used one or more times in a character string to indicate "all
names with or without the preceding or following characters."
Thus, DELETE MYFROG@_ means delete MYPROG. FTN, MYPROG.BIN,
MYFROG. LIST, and so on. See the PRIMDS Commands Reference Guide
and the Prime User's Guide for a complete discussion of wildcards.

F i r s t E d i t i o n C - 1 6

INDEX

Index

A register, initial value for,
5-7, 5-12, 5-18

A/SYMBOL (SEG) subcommand, 5-14

Abbreviations at mirii-command
level, 7-4, 9-3

Aborting from BIND, 2-13, 8-15

Absolute addresses, equating
symbol names to, 8-17

Access to private segments,
l i s t i ng , 9 -25

AOCESS_VIOLATION$ condition, 5-7

Activating the system search
l i s t , 9 - 3 2

Active EPFs,
definit ion of, 9-9
l i s t i ng , 9 -11

Actual memory addresses, 1-8

Addressing modes, 1-2

ALLOCATE subcommand, 5-18, 8-4

Allocating storage for COMMON
blocks, 8-4

Application libraries in EPFs,
2-11

Assembler, PMA, 1-3

ATTACH (SEG) subcommand, 5-14

ATTACKS search list, 9-5a, 9-5b,
9-23, 9-33, 9-34

AUTOMATIC (SEG) subcommand, 5-14

B

B register, initial value for,
5-7, 5-12, 5-18

Base areas, mapping, 8-12

Basenames, 2-2

Batch jobs and search lists,
6-11

X - l First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

Binary files (See Object files)

BINARYS search list, 9-23

BIND, (See also EPFs; Library
EPFs)

adding suffix to EPFs, 2-12
basic subcommands, 2-8
changing .RUN suffix, 7-7
creating library EPFs, 6-7
description of, 1-4
designating main procedure,

8-11
displaying help screen, 2-16
filing EPFs, 2-14
l ir ik ing l ibraries, 8-9
lii__ing object files, 2-9, 8-9
map files, 8-11
nonrecognition of prefixes,

2-3
problems, 7-8
quitting from, 2-13, 8-15
recognition of suffixes, 2-3
relinking modules, 2-18, 2-19
required access rights to use,

2-5
Summary of lijiking subcommands

fo r, 8 -2
using from command line, 2-6
using interactively, 2-7

BIND subcommand,
COMPRESS, 8-14

BIND snibcommands,
ALLOCATE, 5-18, 8-4
CHANGE_SYMBOL_NAME, 5-19,

5-20, 8-4
COMMENT, 8-5
0CMOO7ARNING, 5-19, 8-5
COMPRESS, 8-5
DYNT, 6-12, 8-6
ENTRYNAME, 6-8, 8-6
FILE, 2-12, 5-15, 5-18, 6-9,

8-7
HELP, 2-16, 8-8
INITIALIZE_DATA, 8-8
ITERATION, 8-19
LIBMODE, 6-7, 8-8
LIBRARY, 2-9, 6-2, 8-9
LOAD, 2-9, 8-9
MAIN, 5-20, 8-11
MAP, 2-15, 5-9, 5-10, 8-11
NAMOENPOS, 8-19

BIND subcommands (continued)
NO_OOMM0N_WARNING, 5-16, 8-15
NOlGENERATICN, 8-19
NOLITERATIQN, 8-19
NOLTREEWALK, 8-20
NO_WILDCARD, 8-20
QUIT, 2-13, 5-15, 8-15
RELOAD, 2-19, 5-18, 8-15
RESOLVE_DEFERR__D_OQMMON, 5-10,

5-17, 8-16
SEARCH_RUI___VERIFY, 8-16
SYMBOL, 5-19, 8-17
VERSION, 8-18
WILDCARD, 8-20

Breadth of command environment,
4-4, 7-2

Building EPF templates, 5-20

C programs,
EXIT routines for, 8-5
library for, 2-11
return statements in, 4-3

CAM files, 8-21

CBL programs,
l ibrary for, 2-11
return statements in, 4-3

CBLLIB library, 2-11

CCLIB library, 2-11

CE$BRD subroutine, 7-5

CHANGE_SYMBOL_NAME snibcommand,
5-19, 5-20, 8-4

CL$GET subroutine, 4-3

CLSPIX subroutine, 4-3, 8-18

CLEANUPS condition, 9-6, 9-7

CLOSE command, 7-5, 9-6

CMDL$A subroutine, 4-3, 8-18

First Edition, Update 1 X-2

INDEX

CMDNCO directory, 1-7, 10-3

CMDSEG utility, 5-9

COBOL compiler, 1-3

COBOL programs (See Program)

COBOL programs, return statements
in, 4-3

OQMANL subroutine, 4-3, 10-5

OOMI$$ subroutine, 10-19

OQMINFuT command, 10-19

OOMLV$ subroutine, 4-4, 5-5

Command environment,
breadth of, 4-4, 7-2
depth of, 7-2
exceeding breadth, 7-5
exceeding depth, 7-5
listing information on, 9-21
reset t ing, 9-6

Command flags, 10-15

Command functions, 10-2

Command input files, 10-19

Command level,
determiriing current, 7-2
l ist ing avai lable, 9-21
releasing, 7-5

Command lines,
EPF subcommands for, 8-3
passing to CPL programs, 10-5
passing to EPFs, 10-5
passing to static-mode

programs, 10-5
reading from, 4-3
using BIND from, 2-6

Command output files, 10-19

Command preprocessing with CP$,
10-17

Command Procedure Language
programs (See CPL programs)

Command processing features of
EPFs, listing, 9-14

Command processor, 10-3
features in EPFs, 8-18
stack (See Stack)

Command status, values for,
10-13

0CMMAND$ search list, 9-5a,
9-5b, 9-23

Commands, (See also EPF-related
commands!

CLOSE, 7-5, 9-6
OOMINFuT, 10-19
COMDUTPUT, 7-4, 10-19
OONCAT, 5-11
COPY, 7-7, 9-36
creating EPFs as, 8-18
DELETE, 9-29
rUMP_STACK, 7-8
EXPAND_SEARCH_RULES, 9-5a
FIX_DISK, 10-20
INITIAl_IZE_00MMAND_ENVIRONMENT,

6-11, 9-6, 9-7
LIST_EFF, 5-13, 8-5, 8-11, 9-8
LIST_LIBRARY_ENTRIES, 9-19
UST_I_LMIT, 9-21
LIST_LIMITS, 7-6
LIST_MINI_OC*!MAND, 9-22
I_EST_SEARjCH_RULES, 9-23
LIST_SEGMENT, 9-25
ir±ni-command level, 9-22
PM, 7-5
PSD, 5-9
RDY, 7-2, 10-6
REENTER, 7-4
R___EASE_LEV___, 5-5, 7-4, 7-6,

9-6
REMOVE_EPF, 7-6, 9-29, 9-36
RESTOR, 5-12
RESUME, 1-3, 1-7, 3-1
SEG, 1-3, 5-6
SET_SEARGH_RULES, 6-9, 6-10,

7-9, 9-32
START, 1-9, 4-4, 5-5, 7-4
VPSD, 5-9

COMMENT subcommand, 8-5

Comments in EPFs, 8-5

X-3 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

COMMON (SEG) subcommand, 5-15

Common areas,
EPFs and, 8-11
misdeclared, 5-6
redefinition of, 5-17, 5-19,

8-16

COMMON blocks,
allocating storage for, 8-1
disabling warning messages for,

8-15
inixing with linkage data, 5-16
placement of, 5-15
resolving pointers to, 8-16
warning messages for, 8-5

OOMMON_WARNING subcommand, 5-19,
8-5

OOMO command, 7-4

OQMO$$ subroutine, 10-19

OOMOUTFUT command, 7-1, 10-19

Compilers,
COBOL, 1-3
FTN, 1-3
recognition of suffixes, 2-3
RPG, 1-3

COMPRESS subcommand, 8-14

Compressing runfiles, 8-5

OONCAT command, 5-11

CONTROL-P at inirii-command level,
9-3

Conventions for filenames, 2-2

Converting R-mode programs to
V-mode programs, 1-3

Converting static-mode programs
to EPFs, 5-7

COPY command, 7-7, 9-36

CP$ subroutine, 10-3
error codes, 10-19
invoking coinmands, 10-12,

10-13
invoking functions, 10-14
invoking programs, 10-13
preprocessing commands, 10-17

CPL command functions written as
EPFs, 1-5

CPL programs,
accepting command lines, 10-5
calling and called by EPFs,

4-4
command preprocessing, 10-18
executing, 3-2
returning text strings, 10-7

CSN subcommand, 8-1

D

D/ (SEG) prefix, 5-15

DAM files, 5-2, 8-21

Data areas, creating, 8-4

DBG debugger, 1-3, 1-1, 1-10,
5-12, 7-10

Debuggers,
DBG, 1-3, 1-4, 1-10, 5-12,

7-10
PSD, 1-3, 1-1
VPSD, 5-12

Debugging,
EPFs, 1-4, 1-10, 5-12, 7-10
I-mode programs, 1-3
V-mode programs, 1-3

Defining symbol names, 8-17

DELETE (SEG) subcommand, 5-10

DELETE command, 9-29

Deleting mapped EPFs, 9-29

First Edition, Update 1 X-4

INDEX

Depth of command environment,
7-2

Direct Access Method files (See
DAM files)

DUMP_STACK command, 7-8

Dynamic linkage, 6—1

Dynamic links to user library
rout ines, 8-6

Dynamic runfiles (See EPFs)

Dynamic segments (See Segments)

Dynamic-mode runfiles (See EPFs)

DYNT subcommand, 6-12, 8-6

E$BARG error code, 10-21

E$BNAM error code, 10-20

E$BVER error code, 10-21

E$GMND error code, 10-21

E$DIRE error code, 10-20

E$ECEB error code, 7-5

E$EOF error code, 10-20

E$FIUS error code, 10-20

E$FNTF error code, 10-20

E$ITRE error code, 10-20

E$NDAM error code, 10-21

E$NINF error code, 10-21

E$NMTS error code, 7-7

E$NMVS error code, 7-7

E$NRIT error code, 10-20

ED editor, 1-8, 1-9, 2-5

EDB editor, 5-15, 8-10

Edi tors ,
ED, 1-9, 2-5
EDB, 5-15, 8-10
EMACS, 2-5
NSED, 7-9

EMACS editor, 1-8, 2-5

EN subcommand, 8-6

ENTRY$ search list, 9-23, 9-33,
9-34

ENTRYNAME subcommand, 6-8, 8-6

Entrynames in library EPFs, 9-19

Entrypoint names,
length of, 1-1
of EPF libraries, 8-6

Entrypoint search lists (See
Search lists)

Entrypoints,
definit ion of, 6-1
listing in library EPFs, 9-19
to library EPFs, 1-7
using map files to identify,

8-12

EPF libraries (See Library EPFs)

EPF templates, building, 5-20

EPF$ subroutines, 5-12

EPF$RUN subroutine, 10-3

EPF-related commands,
IOTTIALIZE_OCWMAND_ENV_RONMENT,

9-6
LIST_EPF, 8-11, 9-8
LIST_LIBRARY_ENTRIES, 9-19
UST_LB_TTS, 9-21
LIST_MINI_Cr_*IMAND, 9-22
LIST_SEARjCH_RUI__S, 9-23
LIST.SEGMENT, 9-25
REMOVE_EPF, 9^-29

X-5 First Edition, Update 1

PROGRAMbffiR'S GUIDE TO BIND AND EPFS

EPF-related commands (continued)
SET_SEAROLRULES, 9-32
summary of, 9-2

EPFs, (See also BIND; Library
EPFs)

accepting command lines, 10-5
adding of suffix by BIND, 2-12
advantages over static

runfi les , 1 -7
allocation of segments by

PRIMOS, 7-2
calling other programs, 4-4,

10-1
changing .RUN suffix, 7-7
command preprocessing, 10-18
command processing features of,

9-14
comments in, 8-5
common areas misdeclared in,

5-6
CPL command functions as, 1-5
creating as commands, 8-18,

10-3
creating with BIND, 2-5
debugging, 1-4, 1-10, 5-12,

7-10
defining symbol names, 8-17
definition of library EPFs,

1-7
definition of program EPFs,

1-7
deleting mapped, 9-29
description of, 1-4, 1-6, 1-7
executing, 3-1
filing, 2-12, 8-7
inserting comments, 8-5
inserting version stamp, 8-18
interface with PRIMOS, 5-2
iteration for, 8-19, 9-14
language libraries, 2-10
limits on called-programs, 7-2
limits on invocations, 10-10
link frames misdeclared in,

5-6
l ink ing , 2 -9
lihking language libraries,

8-9
linking libraries, 6-2, 8-9
linking programs to, 6-4
linking system libraries, 2-9
linking to libraries, 6-4
liriking user libraries, 2-10
listing information on, 9-8

EPFs (continued)
main procedure for, 8-11
map files, 8-12
name generation for, 8-19,

9-14
nonactive, 9-9, 9-11, 9-29
order of library linkage, 2-10
paging disk space, 1-1
placement of areas in, 8-11
problems with in-use, 7-7
prooedure areas, 8-11
procedure segments used, 9-12
processing ROAM files, 8-21
producing maps of, 8-11
programming guidelines for,

4-2
rel ink ing, 8-15
reloading modules, 2-19
remote, 1-10
removing from user's address

space, 9-29
REPLACE files, 9-37
replacing, 9-36
replacing procedures, 8-15
returning severity codes, 10-6
returning text strings, 10-7
sharing among users, 1-10
stack frames misdeclared in,

5-6
stages in creating, 1-8
statuses of, 9-9
subcommands for, 8-3
suspending, 5-3
treewalking for, 8-20, 9-14
types of, 9-9
use as CPL command functions,

1-5
use of library EPFs, 6-12
wildcarding for, 8-20, 9-14

Error codes,
return ing,
summary of,

4 - 1
10-19

ERRPR$ subroutine, 4-3

ERRSET subroutine, 4-3, 4-1

Executable Program Formats (See
EPFs)

EXECUTE (SEG) subcommand, 5-15

Executing EPFs, 3-1

First Edition, Update 1 X-6

INDEX

EXIT subroutine, 4-3, 5-5

EXPAND_SEARCH_RULES command,
9-5a

External PRIMOS commands, 10-3

GETERR subroutine, 4-4

H

HELP subcommand, 2-16, 8-8

F/ (SEG) prefix, 5-15

F77 programs, return statements
in, 4-3

FILE subcommand, 2-12, 5-15,
5-18, 6-9, 8-7

File suffix conventions, 2-2

Filenames, conventions for, 2-2

Filing EPFs, 2-12, 8-7

FIX_DISK command, 10-20

Flags, mapping command processor,
8-12

For<_e-liriking prooedure code,
8-10

FORTRAN IFTNLB library, 5-15

FORTRAN PFTNLB library, 5-17

FRE$RA subroutine, 10-4, 10-17

Freeing storage memory, 10-17

FTN compiler, 1-3

FTN programs,
impure code in, 4-4, 5-4
main prooedure in, 8-11
return statements in, 4-3

Inunctions,
command preprocessing, 10-19
invocation, 10-11, 10-12
returning text strings, 10-7

I-mode dynamic programs (See
EPFs)

I-mode static programs (See
Static-mode programs)

ICE command, 9-6

IDATA subcommand, 8-8

IFTNLB FORTRAN library, 5-15

IL (SEG) subcommand, 5-15

II1__GAL_SEGN0$ condition, 5-7,
7-6

Imaginary memory addresses, 1-8

In-use EPFs, 7-7, 9-9

INCLUDES search list, 9-23

IOTTIALIZE (SEG) subcommand,
5-15

IMTIALIZE_CXMIAND_ENVIRaNMENT
command, 6-11, 7-5, 9-6, 9-7

INITIALIZEJDATA subcommand, 8-8

Initializing data segments, 8-8
Initializing registers, 5-18
Internal FRBDS commands, 10-2

X-7 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

Invoking,
coinmands with CP$, 10-12,

10-13
functions, 10-11
functions with CP$, 10-14
internal commands with CP$,

10-12
programs, 10-7
programs with CP$, 10-13

ISC sessions, terminating, 9-6

Iteration in EPFs, 8-19, 9-14

ITERATION subcommand, 8-19

ITR subcommand, 8-19

K

K (Keys) register, defining value
fo r, 5 -7

K$NRTN key, 4-3

K$SRTN key, 4-1

Keywords, search rule, 9-33

Language libraries,
for EPFs, 2-10
l i r ik ing, 8-9

LE command, 9-8

LI subcommand, 2-9, 8-9

LIB UFD, 2-9, 8-9

LIBMODE subcommand, 6-7, 8-8

L ib ra r ies ,
CBLLIB, 2-11
CCLIB, 2-11
IFTNLB, 5-15
linking to EPFs, 8-9
list of language, 2-11
nonconvertible to EPFs, 5-6

Libraries (continued)
nonshared, 6-3
order of linkage to EPFs, 2-10
PASLIB, 2-11
PFTNLB, 5-17
PL1GLB, 2-11
setting COMMON blocks, 8-1
static shared, 6-3
using, 6-2
VAPPLB, 2-11
VKDALB, 2-11
VRPGLB, 2-11
VSRTLI, 2-11

LIBRARIES* directory, 6-1

LIBRARY (BIND) subcoinmand, 2-9,
6-2, 8-9

LIBRARY (SEG) subcommand, 5-15

Library EPFs, (See also BIND;
EPFs)

creating, 6-7, 8-8
debugging, 1-4, 1-10, 5-12,

7-10
defining entrypoint names, 8-6
definition of, 1-7, 6-3, 6-5
entrypoints, 1-7, 9-19
guidelines for using, 6-9
linkage between program and

process classes, 6-6
linking programs to, 6-1
links to, 8-6
listing, 9-8, 9-11
process-class type, 6-6
program-class type, 6-5
removing from address space,

9-29
specific entiynames, 9-20
use in program EPFs, 6-12

Library routines, creating links
to, 8-6

Limits on called programs, 7-2

limits on program invocation,
10-10

Link frames, misdeclared, 5-6

First Edition, Update 1 X-8

Linkage areas in EPFs,
l i s t i n g , 9 - 1 2
mapping, 8-11

linkage seguenoes, rewriting,
5-8

J^KAGE_ERROR$ condition, 7-9

Linkers,
definit ion of, 1-1
differences from loaders, 1-2

EPFs, (See also EPFs)
EPFs to libraries, 6—1
l i b r a r i e s , 8 - 9
object files, 2-9, 8-2, 8-9
user library routines, 8-6

Links to user library routines,
8-6

LIST_EPF command, 5-13, 7-4,
8-5, 8-11, 9-8

I_TST_LIBRARY_ENTRIES command,
9-19

LIST_LIMITS command, 7-1, 7-6,
9-21

LIST_MINI_OOMMANDS command, 7-4,
9-22

I_EST_SEARCH_RULES command, 9-23

LIST_S_X_MENT command, 7-1, 9-25

Listing entrypoints in library
EPFs, 9-19

Listing information on EPFs, 9-8

LL command, 9-21

LLENT command, 9-19

LM subcommand, 8-8

LMC command, 9-22

IO subcommand, 2-9, 8-9

INDEX

LOAD (BIND) subcommand, 2-9, 8-9

LOAD (SEG) snibcommand, 5-16

LOAD utility, 1-3

Loaders, differences from
l inke rs , 1 -2

Login file, 6-11, 7-9

LS command, 9-25

LSR command, 9-23

M

Main procedure of EPFs,
designating, 8-11

MAIN subcommand, 5-20, 8-11

MAP (BIND) subcommand, 2-15,
5-9, 5-10, 8-11

MAP (SEG) subcommand, 5-10

Map files,
EPF, 8-12
identifying library EPF

entrypoints with, 8-12
producing retroactive, 8-13

Map files, SEG, 5-11

Mapped EPFs, removing, 9-29

Memory addresses, 1-8

Memory, misdeclared, 5-6

MIDASPLUS files, 2-11

Mini-command level,
available coininands, 7-3, 9-22
disabling of user

abbreviations, 7—1, 9-3
leaving, 9-6
reaching, 5-5, 9-3
use Of CONTROL-P, 9-3

X-9 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

Mim-commands, 7-3, 9-3, 9-5,
9-22

Misdeclared command areas in
programs, 5-6

Misdeclared link frames in
programs, 5-6

Misdeclared stack frames in
programs, 5-6

MIX (SEG) subcommand, 5-9, 5-16

MODIFY (SBG) subcommand, 5-11

Multiple commands, preprocessing,
10-18

MV (SBG) subcommand, 5-16

Nonactive EPFs,
definit ion of, 9-9
l i s t i ng , 9 -11
removing from address space,

9-29

Nonshared libraries, 6-3

NPX slave processes, 9-6

NSCW (SBG) subcommand, 5-16

NSED editor, 7-9

NTW subcommand, 8-20

NW$ in names, 10-18

NWC subcommand, 8-20

NX$ in names, 10-18

N

Name generation,
in EPFs, 8-19
position for EPFs, 9-14

NAMGENPOS subcommand, 8-19

Naming conventions for files,
2-2

NCW subcommand, 8-15

NG subcommand, 8-19

NGP subcommand, 8-19

NITR subcommand, 8-19

NO_OOMMQN_WARNING subcommand,
5-16, 8-15

NO_GENERATIQN subcommand, 8-19

NO_ITERATION subcommand, 8-19

NO_IREEWAI__ subcommand, 8-20

NO_WILDCARD subcommand, 8-20

Object files,
creating, 1-8
lijiking to EPFs, 8-9

Open EPFs, replacing, 9-36

OPERATOR (SEG) subcommand, 5-17

OuTjOF_BOUNDS$ condition, 5-7

Overwriting the system search
l i s t , 9 - 3 2

P/ (SBG) prefix, 5-17

Page boundaries, 5-17, 8-10

Paging disk space, EPF use of,
1-4

PARAMS (SEG) subcommand, 5-12

First Edition, Update 1 X-10

INDEX

Pascal programs,
l ibrary for, 2-11
return statements in, 4-3

PASLIB library, 2-11

Pathnames, using BIND to display
loaded object, 8-16

Pause statements in programs,
4-3

PBECB option, 4-4, 5-1

PFTNLB FORTRAN library, 5-17

PFTNLB library, 2-9, 8-9

Phantoms and search lists, 6-11

PL (SEG) subcommand, 5-17

PL1 programs,
naming conventions in, 2-3
res ta r t i ng , 4 -3
return statements in, 4-3

PL1G programs,
l ibrary for, 2-11

PL1GLB lihrary, 2-11

PM command, 7-5

PMA assembler, 1-3

PMA programs,
converting to EPFs, 5-3
impure code in, 5-4
main prooedure in, 8-11
return statements in, 4-3
use Of LINK and PROC

pseudo-ops, 4-2

POINTER_FAULT$ condition, 5-7

Pointers, resolving to COMMON
blocks, 8-16

Prefixes and BIND, 2-3

PRERR subroutine, 4-1

Prime Macro Assembler programs
(See PMA programs)

Prime Symbolic Debugger (See
PSD)

PRIMIX child processes,
terminat ing, 9-6

PRIMOS coinmands (See Commands)

PRIMOS, interface with EPFs, 5-2

Private dynamic segments, 9-21

Private segments in use, 9-25

Private static segments, 9-21

Procedure areas in EPFs, 8-11

Procedure segments used by EPFs,
9-12

Process, command, 10-3

Process-class library EPFs (See
Library EPFs)

Program EPFs (See EPFs)

Program invocation, 10-7
command interface, 10-10
limits on, 10-10
recursive, 10-21
use of shared memory, 10-10

Program-class library EPFs (See
Library EPFs)

Programs (See C programs; CBL
programs; CPL programs; EPFs;
F77 programs; FTN programs;
Library EPFs; Pascal
programs; PL1G programs; PMA
programs; Static-mode
programs; VRPG programs)

PSD,
command, 5-6
debugger with R-mode programs,

1-3

PSD (SEG) subcommand, 5-12

X - l l First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

§
Q subcommand, 2-13, 8-15

QUIT (BIND) subcommand, 2-13,
5-15, 8-15

QUIT (SEG) subcommand, 2-14,
5-12, 5-18

Quitting from BIND, 8-15

R

R-mode programs (See Static-mode
programs)

R-mode subroutines, 5-7

R/SYMBOL (SEG) subcommand, 5-18

Ranges for segments, mapping,
8-12

RD$CED subroutine, 7-5

RDC subcommand, 8-16

RDTK$$ subroutine, 4-3, 8-18,
10-5

RDY command, 7-2, 10-6

Recursive procedure invocation,
10-21

Recursive program invocation,
10-21

REENTER command, 7-1

Registers,
setting values for, 5-7, 5-18
setting values of, 5-12

R___EASE_LEVEL command, 5-5, 7-1,
7-6, 9-6

Relinking EPFs, 8-15

RELOAD subcommand, 2-19, 5-18,
8-15

Reloading modules, 2-19

REMEPF command, 9-29

Remote EPFs, 1-10

REM0VE_EFF command, 7-4, 7-6,
9-29, 9-36

Removing EPFs from user's address
space, 9-29

REPLACE files, 9-37

Replacing open EPFs, 9-36

Resetting command environment,
9-6

Resetting system entrypoint
search list, 9-32

RESOLVE_DEF_RRED_OOMMQN
subcoinmand, 5-10, 5-17, 8-16

Resolving pointers to COMMON
blocks, 8-16

Resources,
exceeding system, 7-7
limit of user, 7-1

Restarting programs, 7-5

RESTOR command, 5-12

RESTORE (SEG) subcommand, 5-12

Restoring EPFs with DBG debugger,
5-12

RESUME (SEG) subcommand, 5-12

RESUME command, 1-3, 1-7, 3-1

RESUMEable SEG runfiles, 5-13

Retroactive map files, 8-13

Retrying link seguences, 2-18

RETURN (SEG) subcommand, 5-18

First Edition, Update 1 X-12

INDEX

Return statements in programs,
4-3

Returning severity codes, 10-6

Returning text strings with EPFs,
10-7

Rewriting linkage sequences, 5-8

RFL flag, 8-10

RL (BIND) subcommand, 8-15

RL (SBG) subcommand, 5-18

ROAM files, 8-21

Routines,
referencing, 8-4
unresolved references, 2-15

RPG compiler, 1-3

RPG II (V-mode) programs, library
for, 2-11

RPn files, 9-37

RUN suffix for filenames, 2-2

Runfiles,
compression of, 8-5
contents of, 1-1
definit ion of, 1-1
dynamic-mode (See EPFs)
types of, 1-6

S-mode subroutines, 5-7

S/ (SEG) prefix, 5-18

SAM files, 8-21

SAVE (SBG) subcommand, 5-12,
5-18

Saving EPFs, 2-12

SCW (SEG) subcommand, 5-19

Search lists,
ATTACKS, 9-5a, 9-5b, 9-23,

9-33, 9-34
batch jobs and, 6-11
BINARYS, 9-23
COMMANDS, 9-5a, 9-5b, 9-23
creat ing, 6-9
designating user default, 6-10
designating user library EPFs,

6-10
ENTRY$, 9-23, 9-33, 9-34
excluding system search list,

9-32
ge t t i ng fu l l y -qua l i fied

pathnames from, 9-5a
INCLUDES, 9-23
list of default, 9-23
listing contents of, 9-23
listing library EPFs in, 9-19
overwriting system, 9-32
phantoms and, 6-11
problems with, 7-9
resetting system, 6-11
resetting system default, 9-32
setting user-defined, 9-32
STATIC_MODE_LIBRARIES entry,

9-33
SYSTEM entry, 9-33
uses of, 9-34
Using search rule keywords

with, 9-33

Search rule keywords, 9-33

SEARCH_RULE_VERIFY subcommand,
8-16

SEG command, 1-3, 5-6

SBG commands,
MAP, 5-10

SEG loader, description of, 1-3

SEG map files, 5-11

SEG runfiles,
creat ing, 1-3
RESUMEable, 5-13

SBG subcommands,
A/SYMBOL, 5-14
ATTACH, 5-14
AUTOMATIC, 5-14

X-13 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

SEG snibcoinmands (continued)
COMMON, 5-15
DELETE, 5-10
EXECUTE, 5-15
IL, 5-15
INITIALIZE, 5-15
LIBRARY, 5-15
LOAD, 5-16
MIX, 5-16
MODIFY, 5-11
MV, 5-16
NSCW, 5-16
OPERATOR, 5-17
PARAMS, 5-12
PL, 5-17
PSD, 5-12
QUIT, 2-14, 5-12, 5-18
R/SYMBOL, 5-18
RESTORE, 5-12
RESUME, 5-12
RETURN, 5-18
RL, 5-18
SAVE, 5-12, 5-18
SCW, 5-19
SETBASE, 5-19
SHARE, 5-13
SINGLE, 5-13
SPLIT, 5-19
SS, 5-19
STACK, 5-19
START, 5-11
SYMBOL, 5-19
SZ, 5-20
TIME, 5-13
VERSION, 5-13
VLOAD, 1-5, 5-14

SEG>CMDSEG utility, 5-9

Segments,
allocation ty PRIMOS, 7-2
exceeding dynamic, 7-5
ex<_eeding static, 7-6
in i t ia l iz ing data, 8-8
listing in-use, 9-25
private dynamic, 9-21
private static, 9-21
unavai labi l i ty of, 7-7

Semicolon as command separator,
10-18

Set Force Load flag (See SFL
fl a g)

SET_SEARCH_RULES command, 6-9,
6-10, 7-9, 9-32

SETBASE (SEG) sulxjommand, 5-19

SETRC$ subroutines, 10-6

Severity codes,
returning, 10-6
signal ing, 10-5
values for, 10-6

SFL flag, 6-3, 8-6, 8-10

SHARE (SEG) subcommand, 5-13

Shared memory, use of, 10-10

SIGNL$ subroutine, 4-3

SINGLE (SBG) subcommand, 5-13

Sort l ibraries, 2-11

Souroe files, naming conventions,
2-2

Source Level Debugger (See DBG)

SPLIT (SEG) subcommand, 5-9,
5-19

Spooling EPF map files, 8-12

SRVFY subcommand, 8-16

SS (SEG) subcommand, 5-19

SSR command, 9-32

STACK (SEG) subcommand, 5-19

Stack frames, misdeclared, 5-6

Stack, use with EPFs, 5-3

START (SEG) subcommand, 5-11

START command, 1-9, 4-1, 5-5,
7-4

Static runfiles, 1-6

Static segments (See Segments)

First Edition, Update 1 X-14

Static shared libraries, 6-3

Static-mode libraries,
errors while calling, 7-8
linking to, 6-7

Static-mode programs,
accepting command lines, 10-5
addressing limitations, 1-2
called by EPFs, 4-4
calling EPFs and CPL programs,

4 - 1
coexisting with EPFs, 1-9
converting from R mode to V

mode, 1-3
converting to EPFs, 5-1, 5-8
debugging, 1-3
linked by LOAD, 1-3
linked ly SBG, 1-3
purpose of R-mode programs,

1-2

STATIC_MCDE_LIBRARIES entry in
search lists, 9-33

Statuses of EPFs, 9-9

Stop statements in programs, 4-3

Subcommands, BIND (See BIND
subcommands)

Subcoinmands, SEG (See SEG
subcommands)

Subroutines,
CE$BRD, 7-5
CLSGET, 4-3
CL$PIX, 4-3, 8-18
CMDL$A, 4-3, 8-18
OOMANL, 4-3, 10-5
0QMI$$, 10-19
00MLV$, 4-1, 5-5
OQMO$$, 10-19
CP$, 10 -3, 10-12
E$ECEB, 7-5
EPF$, 5 -12
EPFSRUN, 10-3
_IR_vHR!j>, 4-3
ERRSET, 4-3, 4-1
EXIT, 4 -3, 5-5
FRE$RA, 10-1, 10-17
GETERR, 4-1
length of names, 1-4

INDEX

Subroutines (continued)
PRERR, 4-4
R-mode, 5-7
RD$CED, 7-5
RDTK$$, 4-3, 8-18, 10-5
S-mode, 5-7
SETRC$, 10-6
SIGNL$, 4-3

Suffixes in filenames, 2-2

Suspending programs, 7-2

SY subcommand, 8-17

SYMBOL (BIND) subcommand, 5-19,
8-17

SYMBOL (SEG) subcommand, 5-19

Symbol names, changing, 8-1

Synchronizers, deleting, 9-6

SYSTEM entry in search lists,
6-9, 9-33

System entrypoint search list,
reset t ing, 9-32

System libraries in EPFs, 2-9

System resources, exceeding, 7-7

SZ (SEG) subcommand, 5-20

Templates, building EPF, 5-20

Text strings, returning, 10-7

TIME (SBG) subcommand, 5-13

Timers, deleting, 9-6

TREEWALK subcommand, 8-20

T_^wa___ing in EPFs, 8-20, 9-14

TW subcommand, 8-20

X-15 First Edition, Update 1

PROGRAMMER'S GUIDE TO BIND AND EPFS

Types of EPFs, 9-9

U

UFD CMDNCO, 1-7

Undefined symbols, mapping, 8-12

Unresolved routine references,
2-15

User abbreviations at
mijLL-command level, 7-4, 9-3

User libraries, linking to EPFs,
2-10

Using libraries, 6-2

VRPGLB library, 2-11

VSRTLI library, 2-11

W

WC subcommand, 8-20

WILDCARD subcoiranand, 8-20

Wildcarding in EPFs, 8-20, 9-14

X

X register, initial value for,
5-7, 5-12, 5-18

V-mode dynamic programs (See
EPFs)

V-mode static programs (See
Static-mode programs)

VAPPLB library, 2-11

VERSION (BIND) subcommand, 8-18

VERSION (SEG) subcommand, 5-13

Version stamp, inserting, 8-18

Virtual Memory File Access (See
VMFA)

VKDALB library, 2-11

VLOAD (SEG) siibcOMnand, 1-5,
5-14

VMFA segments, exceeding, 7-7

VPSD,
command, 5-9
debugger, 5-12

VRPG programs, library for, 2-11

Zero sector, 5-20

First Edition, Update 1 X-16

SURVEY

READER RESPONSE FORM

DOC8691-1LA Programmers Guide to BIND and EPFs

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

e x c e l l e n t v e r y g o o d g o o d f a i r p o o r

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: too simple about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

I l lust rat ions: too many about r ight too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current
documentation catalog and ordering information? yes no

N a m e : P o s i t i o n :

Company:

Address:

Z ip:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	vi
	vii
	viii
	ix
	About This Book
	xi
	xii
	xiii
	Part I
	Creating and Running EPFs
	Chapter 1
	Overview of BIND and EPFs
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	Chapter 2
	Working With BIND
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	Chapter 3
	Running EPFs
	3-1
	3-2
	3-3
	3-4
	Part II
	Using BIND and EPFs
	Chapter 4
	Programming With EPFs
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	Chapter 5
	Converting to EPFs
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	Chapter 6
	Libraries and Library EPFs
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	Chapter 7
	Troubleshooting
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	Part III
	Reference
	Chapter 8
	BIND Subcommands Dictionary
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	Chapter 9
	EPF Commands Dictionary
	9-1
	9-2
	9-3
	9-4
	9-5
	9-5a
	9-5b
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	9-33
	9-34
	9-35
	9-36
	9-37
	9-38
	Chapter 10
	EPFs Calling Programs
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	Appendixes
	Appendix A
	BIND Error Messages
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	Appendix B
	EPF Error Messages
	B-1
	B-2
	B-3
	Appendix C
	Glossary
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	Survey
	
	

